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Glossary 30 

Adrenergic - a substance, receptor or transporter that involves adrenaline (epinephrine) or 31 

noradrenaline (norepinephrine) 32 

Baroreflex – a mechanism that regulates blood pressure by altering autonomic nervous 33 

output  34 

Bradycardia – a reduction in heart rate 35 

β-adrenergic sensitivity – sensitivity of β-adrenergic pathways to stimulation by agonists 36 

Cardiac hypertrophy – an increase in the mass or size of the heart  37 

Cardiac output - the product of heart rate (HR) and stroke volume (SV), measured in liters 38 

per minute 39 

Cholinergic – a substance, receptor or synapse that involves acetylcholine, or butyrylcholine 40 

Chronic developmental hypoxia (CDH) - defined here as periods of hypoxia during 41 

development that last for days, weeks or months 42 

Convective cardiovascular function – the movement of solutes and O2 through the flow of 43 

blood  44 

Critical O2 tension - the O2 concentration where animals transition from oxy-regulation (i.e. 45 

maintaining a stable rate of oxygen consumption as environmental oxygen concentration 46 

declines) to oxy-conformation (i.e. when oxygen consumption declines linearly with 47 

environmental oxygen concentration) 48 

Critical Window:  Periods of heightened plasticity during development where environmental 49 

stress can affect morphology and physiology 50 

Diastolic or diastole – referring to the stage of the cardiac cycle when the heart is relaxed 51 

Eutrophication – a process where excessive plant and algal growth occurs, mainly due to 52 

increased availability of nutrients  53 

Hypercapnia – excess carbon dioxide 54 

Hypobaric - having less than normal atmospheric pressure 55 
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Isobaric hypoxia – reduced O2 with normal atmospheric pressure 56 

Oxidative phosphorylation – a process in the mitochondria which generates ATP by the 57 

reduction of O2 58 

Sea-level equivalent oxygen concentration – the amount of oxygen available at high 59 

altitude that is equivalent to the oxygen concentration at sea level   60 

Secretory granules – organelles that contain specific proteins and other macromolecules 61 

that are destined for secretion into the extracellular space 62 

Systolic or systole - referring to the stage of the cardiac cycle when the heart is contracted 63 

Tachycardia – an increase in heart rate 64 

 65 

Abstract 66 

Animals at early life stages are generally more sensitive to environmental stress than adults. 67 

This is especially true of oviparous vertebrates that develop in variable environments with 68 

little or no parental care. These organisms regularly experience environmental fluctuations as 69 

part of their natural development, but climate change is increasing the frequency and 70 

intensity of these events. The developmental plasticity of oviparous vertebrates will therefore 71 

play a critical role in determining their future fitness and survival. In this Review, we discuss 72 

and compare the phenotypic consequences of chronic developmental hypoxia on the 73 

cardiovascular system of oviparous vertebrates. In particular, we focus on species-specific 74 

responses, critical windows, thresholds for responses and the interactive effects of other 75 

stressors, such as temperature and hypercapnia.  Although important progress has been 76 

made, our Review identifies knowledge gaps that need to be addressed if we are to fully 77 

understand the impact of climate change on the developmental plasticity of the oviparous 78 

vertebrate cardiovascular system.  79 

  80 
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Introduction 81 

Oviparous (egg-laying) vertebrates typically develop in fluctuating environments with little or 82 

no parental care. This reproductive strategy has some advantages over viviparity (Shine, 83 

2015), but it exposes the embryo to environmental stress at a critical stage of life when 84 

defence mechanisms may not be fully developed. The consequences can be severe, because 85 

environmental fluctuations during development can permanently alter organismal structure, 86 

function and behaviour, and these traits can even be inherited by subsequent generations 87 

(Sultan, 2017). Therefore, the developmental plasticity of oviparous vertebrates plays a 88 

critical role in determining their future fitness and survival. This is especially true in an era of 89 

climate change, where rising concentrations of CO2 in the atmosphere are driving global 90 

warming and increasing the frequency and intensity of environmental hypoxia and 91 

hypercapnia (Pörtner et al., 2014).  Such rapid changes in the severity, frequency and spatial 92 

scale of these stressors will significantly challenge the developmental plasticity of oviparous 93 

species. Thus, it is important to gain an understanding of both the short- and long-term 94 

consequences of environmental stress on the embryonic physiology of these vulnerable 95 

animals.   96 

 97 

Oviparous vertebrates commonly experience hypoxia during embryonic development (Box 1).  98 

Importantly, studies across a wide range of species have shown that chronic developmental 99 

hypoxia (CDH; see Glossary) has persistent effects on the cardiovascular system of oviparous 100 

vertebrates (Fig. 1). It appears that some cardiovascular responses to CDH are well-conserved 101 

among mammals, birds, reptiles and fish (Galli et al., 2023); Tables S1, S2 and S3). However, 102 

there are many interspecific differences, and the outcome of CDH appears to be dependent 103 

on multiple factors, including the magnitude and duration of hypoxia, as well as 104 

developmental stage. Furthermore, the hypoxic response can be altered by the interactive 105 

effects of other environmental stressors, such as temperature and hypercapnia (Box 2). These 106 

interactions are becoming increasingly important in the context of climate change.     107 

 108 

The overall aim of this Review is to discuss and compare the phenotypic consequences of CDH 109 

on the cardiovascular system of oviparous birds, fish and reptiles. We define CDH here as 110 

periods of hypoxia that last for days, weeks or months. When we refer to oxygen levels, we 111 

present values as % O2 saturation (21% O2 = 100% air saturation).  We start the Review with 112 
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an overview of the effects of CDH on the embryonic cardiovascular system of each vertebrate 113 

class, as well as the persistent effects on juvenile and adult life stages.  Unless specified, the 114 

data we present on juveniles and adults are taken from studies that exposed embryos to CDH 115 

for a defined period during development, and then returned them to normoxia and 116 

investigated the cardiovascular phenotype in later life.  These kinds of studies reveal traits 117 

that arise from persistent developmental plasticity, rather than plasticity due to acclimation 118 

(Earhart et al., 2022). Where possible, we attempt to identify species-specific responses, the 119 

threshold for response and critical windows. Although data is extremely limited, we also 120 

review the interactive effects of CDH, hypercapnia and temperature on cardiovascular 121 

outcomes.  Surprisingly, we were unable to find sufficient literature to warrant a review of 122 

the effects of CDH on the cardiovascular system of amphibians (only one relevant paper: 123 

(Fritsche and Burggren, 1996).  124 

 125 

Effects of developmental hypoxia on the avian cardiovascular system  126 

Much of what we know about the effects of CDH on the avian cardiovascular system comes 127 

from studies on domestic chickens (Table S1).  These investigations were largely devised to 128 

improve farming practices or to study the clinical implications of CDH without the 129 

confounding influence of maternal responses (Itani et al., 2018). However, the levels of 130 

hypoxia used in these studies (13–17% O2 saturation) are within the natural range of some 131 

avian nests (Box 1), which makes them ecologically relevant.   132 

 133 

Effects of CDH on embryonic somatic growth and heart mass 134 

The most common consequence of CDH is embryonic growth restriction. In chickens, isobaric 135 

or hypobaric hypoxia (see Glossary) at 13–15% O2 (≡2500–3500m) consistently leads to a 136 

reduction in embryonic body mass (Table S1A), and the critical window occurs at 30–60% of 137 

incubation (Dzialowski et al., 2002; Ruijtenbeek et al., 2000).  In addition, embryos from 138 

various chicken strains (broilers, red junglefowl, white Leghorn) exposed to isobaric or 139 

hypobaric hypoxia have an increased brain-to-body weight ratio (Giussani et al., 2007; Salinas 140 

et al., 2010; Skeffington et al., 2020) and/or an increased heart-to-body weight ratio (Table 141 

S1C).  Asymmetric growth restriction is usually a consequence of the ‘brain-sparing’ response  142 

(Giussani, 2016), which involves a systemic vasoconstriction that shunts blood to hypoxia-143 

sensitive organs, such as the brain and heart.  Although protective in the short term, it can 144 
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ultimately lead to systemic hypertension and cardiac remodelling (Giussani, 2016).  Indeed, 145 

some studies have shown that isobaric or hypobaric hypoxia leads to an increase in chick 146 

embryonic heart mass, aortic wall thickness and ventricular wall thickness (Table S1B; (Salinas 147 

et al., 2010; Villamor et al., 2004). However, other studies have found a decrease in heart 148 

mass, or no effect (Table S1B), and there appears to be no clear correlation between the 149 

outcome and the length or duration of the hypoxic exposure.  150 

  151 

Effects of CDH on embryonic O2-carrying capacity and cardiac function 152 

CDH triggers a range of responses to improve O2-carrying capacity and delivery in vertebrates 153 

(Galli et al., 2023). Embryonic capillary density and chorioallantoic membrane (CAM) 154 

vascularity is increased in the CDH-exposed Canada goose and domestic chicken, respectively 155 

((Snyder et al., 1984); Table S1E).  Hematocrit is also increased in chicken embryos exposed 156 

to CDH (13–15%, Table S1E), and the critical window lies between day 6 and 12 of 157 

development (Dzialowski et al., 2002).  However, at least in the case of sea-level chickens, the 158 

increase in embryonic O2-carrying capacity is not enough to offset the negative effects of 159 

hypoxia, and cardiac function is compromised. In one study, hypoxia reduced chicken 160 

embryonic ventricular peak systolic pressure, dorsal aortic peak systolic pressure (see 161 

Glossary), stroke volume and cardiac output (see Glossary), while diastolic function (see 162 

Glossary) was preserved (Sharma et al., 2006). In other studies, hypoxic chick embryos had 163 

signs of cardiomyopathy, including left ventricular dilatation, reduced ventricular wall 164 

thickness, increased apoptosis (Tintu et al., 2009), a reduced left ventricular ejection fraction, 165 

aortic thickening, reduced contractility, reduced cardiac output and diastolic dysfunction 166 

(Itani et al., 2016; Itani et al., 2020; Jonker et al., 2015; Rouwet et al., 2002).  These problems 167 

were associated with a significant increase in cardiac oxidative stress and a reduction in 168 

cardiac antioxidant capacity (Itani et al., 2016; Itani et al., 2020).  Heart rate is generally 169 

reduced by acute hypoxia in chickens (Akiyama et al., 1999; Altimiras and Phu, 2000; Crossley 170 

et al., 2003; Mortola et al., 2010; Sharma et al., 2006; Tazawa, 1981), but it eventually returns 171 

to control values with longer hypoxic periods; Table S1D).  This is despite a significant increase 172 

in adrenal concentrations of adrenaline and noradrenaline, which is associated with a greater 173 

sensitivity of cardiac β-receptors and enhanced sympathetic innervation in the peripheral 174 

vasculature (Table S1H).   175 

Effects of CDH on embryonic avian cardiomyocytes 176 
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The effects of CDH on chicken embryonic cardiac structure and function are associated with 177 

multiple cellular abnormalities. Ventricular protein content and protein/DNA ratios are 178 

reduced in hypoxic embryonic chickens, which is associated with a reduction in heart mass 179 

(Asson-Batres et al., 1989). In another study, CDH initially caused cardiac myocyte hyperplasia 180 

in chicken embryos, but this eventually led to hypertrophy (see Glossary) with more 181 

myofibrils, larger Golgi complexes, less glycogen and fewer, larger secretory granules (see 182 

Glossary; (Maksimov and Korostyshevskaia, 2012). This response was also accompanied by an 183 

increase in cardiac collagen (Table S1G), and a decrease in myosin heavy chain and titin 184 

proteins (Tintu et al., 2009).  There is also reduced expression of genes involved in cardiac 185 

calcium handling, as well as a shift from compliant to stiff isoforms of titin and increased 186 

vascular endothelial growth factor (VEGF) expression (Jonker et al., 2015; Tintu et al., 2009).  187 

CDH also increases mitochondrial-derived oxidative stress in the hearts of chicken embryos 188 

and reduces mitochondrial efficiency and capacity (Table S1F).  189 

 190 

Long-term effects of avian CDH on the cardiovascular system 191 

Numerous studies have shown that developmental hypoxia has long-term effects on the avian 192 

cardiovascular system. Firstly, the growth restriction and increased heart-to-body weight 193 

ratio associated with CDH often continues into adulthood in chickens (Table S1A; (Lindgren 194 

and Altimiras, 2013).  Changes in absolute heart mass are often absent after hatching or later 195 

in life, indicative of a degree of cardiac plasticity (Table S1B).  However, the cardiomyopathy 196 

in hypoxic embryonic chickens observed by Tintu et al. (2009) persists into adulthood, with 197 

severe left ventricular dilatation, decreased left ventricular ejection fraction, fibrosis and 198 

diastolic dysfunction.  Lindgren and Altimiras (2013) showed that adult chickens exposed to 199 

CDH have signs of systolic, but not diastolic, dysfunction and increased expression of B1 200 

adrenoreceptors without any change in collagen content.  Lastly, Skeffington et al. (2020) 201 

found a range of cardiovascular abnormalities in adult chickens exposed to CDH, including 202 

hypertension, increased cardiac work, enhanced baroreflex gain (see Glossary), left 203 

ventricular wall thickening and increased contractility.  Overall, adult chickens exposed to 204 

CDH share many of the pathological cardiovascular signatures observed in adult mammals 205 

from hypoxic pregnancies (Table S3; (Itani et al., 2018), and the phenotype is reminiscent of 206 

both compensated and decompensated heart failure.  This makes chickens an excellent model 207 
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for studying the programming of cardiovascular disease by CDH in the absence of confounding 208 

maternal factors.    209 

 210 

Effects of developmental hypoxia on the cardiovascular system of reptiles 211 

Many embryonic reptiles experience CDH as part of their natural development, but climate 212 

change is increasing the frequency and intensity of these events (Box 1 and 2).  It is particularly 213 

interesting to study cardiovascular programming in reptiles, because cardiac design differs 214 

substantially between the reptilian classes (Burggren et al., 2020).  Most turtles (testudines), 215 

snakes and lizards (squamates) have a single undivided ventricle with no pressure separation 216 

between the pulmonary and systemic circulations. However, monitor lizards and pythons 217 

have a functionally divided ventricle, and crocodilians (alligators, crocodiles, caimans and 218 

gharial) have a fully divided ventricle, allowing for high systemic arterial pressures and an 219 

elevated metabolic rate.  These differences place variable metabolic demands on the reptilian 220 

cardiovascular system, which could be expected to lead to species-specific responses to CDH.    221 

 222 

Effects of CDH on reptilian embryonic somatic growth and heart mass 223 

As in chickens, there is no effect of CDH on reptilian embryonic body mass if the O2 224 

concentration is at or above 17% (Table S1A).  However, isobaric and hypobaric hypoxia at O2 225 

concentrations of 10–15% consistently reduces embryonic body mass and/or body length in 226 

American alligators, snapping turtles, Florida red-bellied turtles, common wall lizards, 227 

viperine snakes and leopard geckos; but total incubation time is unchanged (Table S1A).  The 228 

critical window for growth restriction is between 70 and 90% incubation in American alligators 229 

(Tate et al., 2016), whereas embryonic mass in common snapping turtles is dependent on the 230 

total hypoxic exposure time (Tate et al., 2015). Hypoxia also causes an increase in the total 231 

amount of yolk present at the end of development in American alligators, Florida red-bellied 232 

turtles, common wall lizards and viperine snakes; indicating a reduced conversion of yolk to 233 

tissue (Crossley et al., 2017; Crossley and Altimiras, 2005; Kam, 1993; Owerkowicz et al., 234 

2009).   235 

 236 

CDH is also associated with an increase in heart-to-body weight ratio in American alligators, 237 

snapping turtles and Florida red-bellied turtles (Table S1C). The critical window for the 238 

response in American alligators is at 20–40% of development (Tate et al., 2016), and 50–70% 239 
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in common snapping turtles (Tate et al., 2015).  The asymmetric growth restriction suggests 240 

that reptiles exhibit the brain-sparing response, which is supported by a recent study that 241 

found a modest increase in brain blood flow in embryonic turtles exposed to CDH (Sartori et 242 

al., 2019).  An increase in absolute heart mass is also evident in hypoxic embryonic snapping 243 

turtles, lizard geckos and common wall lizards (Table S1B).  However, in most studies, absolute 244 

heart mass does not change with hypoxia, suggesting that heart growth is preserved at the 245 

expense of somatic growth.  Nevertheless, Crossley’s laboratory thoroughly investigated the 246 

critical windows for this response and showed that cardiac enlargement occurs before 247 

somatic growth restriction (Tate et al., 2015; Tate et al., 2016).  This finding suggests that 248 

cardiac enlargement in reptiles is a direct response to CDH, rather than a consequence of 249 

reduced somatic growth.   250 

 251 

Effects of CDH on reptilian embryonic O2 carrying capacity and heart function 252 

In contrast to birds, CDH leads to long-term changes in reptilian heart rate, but the responses 253 

are species-specific. CDH causes bradycardia in American alligator embryos (70–90% 254 

development, 10% O2) and common wall lizards chronically exposed to high-altitude hypoxia 255 

[15–17% O2 sea-level equivalent (SLE, see Glossary); Table S1D, but it causes a significant 256 

tachycardia (see Glossary) in embryonic snapping turtles (10% O2) and scincid lizards (Table 257 

S1D.  The underlying reason for these species-specific differences is unknown, and it is also 258 

unclear why reptiles modulate heart rate during CDH, whereas mammals and birds do not 259 

(Table S1D Table S2C).   260 

 261 

As in birds, chronic levels of hypoxia in embryonic reptiles trigger adaptive cardiovascular 262 

responses that improve O2-carrying capacity and delivery.  American alligators and Florida 263 

red-bellied turtles increase haematocrit during chronic hypoxia exposure (Kam, 1993; 264 

Warburton et al., 1995), but haemoglobin isoform expression and affinity is unchanged 265 

(Bautista et al., 2021; Grigg et al., 1993). CDH also increases angiogenesis in the CAM in 266 

American alligators (Corona and Warburton, 2000), which lowers the resistance of the 267 

chorioallantoic circulation by adding parallel vascular beds.  This response ultimately reduces 268 

systemic blood pressure (Crossley and Altimiras, 2005; Eme et al., 2011b; Eme et al., 2013).  269 

The critical window for hypotension is at 20–70% of development in snapping turtles and 50–270 

70% in American alligators (Tate et al., 2015; Tate et al., 2016). However, despite arterial 271 
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hypotension, blood flow to the American alligator CAM increases during hypoxia, which 272 

presumably serves to enhance gas exchange (Eme et al., 2011a; Sartori et al., 2019). Given 273 

that total blood flow remains constant, the increase in CAM blood flow may be driven by 274 

increased intraembryonic vascular resistance, which could also explain the observed cardiac 275 

enlargement in snapping turtles and lizard geckos (Eme et al., 2021; Parker and Dimkovikj, 276 

2019).   277 

 278 

Effects of CDH on the embryonic reptilian acute hypoxia tolerance 279 

In addition to baseline changes in cardiovascular function, CDH alters the embryonic 280 

cardiovascular response to acute hypoxia in reptiles. American alligator and snapping turtle 281 

embryos exposed to CDH have an attenuated response to an acute hypoxic challenge, with 282 

blunted heart rate and blood pressure responses (Crossley and Altimiras, 2005; Eme et al., 283 

2011b). In agreement with these findings, critical O2 tension (PCrit; see Glossary) is lower in 284 

snapping turtles and American alligator embryos exposed to CDH, compared to their 285 

normoxic counterparts (Crossley et al., 2017; Kam, 1993).  However, the enhanced hypoxia 286 

tolerance does not appear to be associated with mitochondrial remodelling (Galli et al., 2016).  287 

Collectively, these results suggest that embryos exposed to CDH are less responsive to acute 288 

hypoxic stress and may tolerate lower levels of hypoxia.  289 

 290 

Long-term effects of CDH on the reptilian cardiovascular system 291 

Most of our understanding of the long-term effects of CDH have come from studies on 292 

American alligators and common snapping turtles.  It is interesting to compare and contrast 293 

these two reptiles because crocodilians are archosaurs and more closely related to birds than 294 

testudines and squamates (Brusatte et al., 2010).  Given that crocodilians also have a fully 295 

divided heart and higher metabolic rates, one may expect American alligators to respond to 296 

CDH more similarly to birds than to snapping turtles.    297 

 298 

Juvenile American alligators and snapping turtles exposed to CDH most commonly experience 299 

catch-up growth, but some studies have reported persistent growth restriction (Table S1A), 300 

as well as an increased heart-to-body weight ratio (Crossley et al., 2022; Galli et al., 2016; Galli 301 

et al., 2021; Joyce et al., 2018; Ruhr et al., 2021; Smith et al., 2023; Smith et al., 2019).  Despite 302 

cardiac enlargement, most resting cardiovascular parameters in juvenile American alligators 303 
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and snapping turtles are similar between individuals from normoxic or hypoxic incubations.  304 

In particular, the systemic and pulmonary hypertension, as well as systolic and diastolic 305 

ventricular dysfunction that is often present in mammals and birds exposed to CDH appears 306 

to be absent in American alligators and turtles (Table S3).   However, there are some reptilian 307 

cardiovascular parameters that are permanently affected by CDH.  Left ventricular stroke 308 

volume is increased and pulmonary blood flow is decreased in juvenile American alligators 309 

exposed to CDH (Joyce et al., 2018; Smith et al., 2019).   Likewise, heart rate is reduced, and 310 

total cardiac output is increased in juvenile common snapping turtles exposed to CDH 311 

(Wearing et al., 2017; Wearing et al., 2016).     312 

 313 

More differences in the long-term cardiovascular phenotype are revealed when reptiles are 314 

placed under physiological stress.  Compared to normoxic controls, juvenile American 315 

alligators from hypoxic incubations that are swimming or stimulated with β-adrenergic 316 

agonists (see Glossary) have a faster rate of ventricular relaxation, greater left ventricle stroke 317 

volume, increased carotid blood flow and lower pulmonary blood flow (Joyce et al., 2018; 318 

Smith et al., 2019).  Furthermore, the blunted cardiovascular response to acute hypoxia that 319 

is observed at the embryonic level is also present in juvenile alligators, suggesting a long-term 320 

improvement in hypoxia tolerance (Crossley et al., 2022; Crossley et al., 2023; Smith et al., 321 

2019).  This is also the case for juvenile turtles exposed to CDH, as they are able to maintain 322 

cardiac output two-fold higher than controls during two hours of anoxia (Ruhr et al., 2021). 323 

The improved anoxia tolerance is also apparent at the cellular level, and is associated with 324 

increased myofilament calcium sensitivity, a superior ability to suppress cardiac myocyte 325 

reactive oxygen species (ROS) production during anoxia and lower basal cardiac ROS 326 

production (Galli et al., 2021; Ruhr et al., 2019). These adaptations could be useful for turtles 327 

in juvenile and adult life stages, as they often experience long bouts of anoxia and 328 

reoxygenation following breath-hold dives and overwintering under ice-covered lakes 329 

(Jackson, 2002).  Exposure to CDH also affects the response to digestion in snapping turtles.  330 

Compared to controls, peak postprandial metabolic rates are higher in juvenile turtles 331 

exposed to CDH (suggesting an increased metabolic cost of digestion) and this is supported 332 

by higher systemic blood flows (Wearing et al., 2017).   333 

 334 



12 
 

The cellular and molecular mechanisms driving cardiovascular programming in reptiles may 335 

involve mitochondrial remodelling, as CDH appears to improve mitochondrial efficiency in 336 

American alligators and snapping turtles, and this is driven by a lower proton leak (Galli et al., 337 

2016; Galli et al., 2021).  Furthermore, CDH induces substantial changes in the cardiac 338 

proteome of American alligators prior to hatching, and these changes are largely maintained 339 

into juvenile life, with animals from hypoxic incubations showing a shift in protein synthesis 340 

(transcription and translation), cellular organization, metabolic adjustments and protein 341 

degradation (Alderman et al., 2019).  Proteins involved in metabolism are particularly 342 

enriched in juvenile alligator hearts from hypoxic incubations, including those with roles in 343 

fatty acid oxidation, the citric acid cycle and oxidative phosphorylation. Also worth noting is 344 

an increased protein expression of the antioxidant superoxide dismutase, which – in addition 345 

to the improved ability to recycle proteins – may help to manage ROS production (Alderman 346 

et al., 2019).  Finally, we have recently shown that cardiac programming by CDH in snapping 347 

turtles is supported by differential expression and DNA methylation of genes associated with 348 

sarcomere function, ion-channels, cardiomyocyte survival and heart rate (Ruhr et al., 2021).   349 

  350 

In summary, it is clear that CDH programmes the cardiovascular physiology of American 351 

alligators and snapping turtles, but in contrast to birds and mammals, the phenotype is not 352 

overtly dysfunctional; in fact, in many cases, it appears to be beneficial. The fact that these 353 

two species lack many of the pathological signatures associated with CDH (Table S3) suggests 354 

the long-term outcome of CDH may be more dependent on body temperature and metabolic 355 

rate, rather than phylogeny. It is possible that the higher metabolic costs associated with 356 

endothermy place an additional metabolic burden on juvenile and adult birds and mammals 357 

exposed to CDH, leading to pathological outcomes.   358 

   359 

Effects of hypoxia on the cardiovascular system of fishes 360 

Among the vertebrate classes, fish are prone to experiencing the most severe levels of 361 

hypoxia during development, particularly in climate change scenarios (Box 1). Previous work 362 

has shown that CDH alters a wide range of phenotypic traits in teleosts, including metabolic 363 

rate (Del Rio et al., 2021), swimming performance (Johnston et al., 2013), sex ratios 364 

(Robertson et al., 2014), the balance of sex hormones (Shang and Wu, 2004) and brain 365 

development (Mikloska et al., 2022).  Nevertheless, surprisingly little is known about the 366 
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effects of CDH on the teleost cardiovascular system.  Comparisons to the other oviparous 367 

classes is also difficult because the levels of hypoxia used in fish studies are considerably more 368 

severe than those used in studies of reptiles and birds.    369 

 370 

Effects of CDH on growth and cardiac mass in fishes 371 

Similar to the other vertebrate classes, fish embryos or larvae exposed to CDH have reduced 372 

body mass (Table S1A), which renders the individuals less competitive and more vulnerable 373 

to predation (Mason, 1969).  The growth restriction is driven by the activation of hypoxia 374 

inducible factor (HIF), which ultimately supresses the insulin-like growth factor (IGF) pathway 375 

(Kajimura et al., 2004; Sun et al., 2011).  Fish embryos exposed to CDH also have slower 376 

developmental rates, delayed hatching and delayed heart morphogenesis (Bagatto, 2005; 377 

Ciuhandu et al., 2005; Del Rio et al., 2021; Kajimura et al., 2005; Miller et al., 2011; Miller et 378 

al., 2008). These effects are particularly prevalent when fish are exposed to hypoxia in the 379 

later embryonic stages, presumably due to the increasing O2 demands of the developing 380 

organism and the O2-diffusion limitations across the egg membrane (Rombough, 1988).   381 

Although acute hypoxia exposure slows growth and delays development during 382 

embryogenesis, upon reoxygenation, hypoxia-exposed embryos often (but not always) return 383 

to the same size as control animals (Table S1A). Zebrafish embryos exposed to ~1–2% O2 from 384 

24 to 36 hours post-fertilisation (hpf) are shorter than control animals, but the embryos catch 385 

up if they are returned to normoxia (Kamei et al., 2018). The catch-up growth in zebrafish 386 

embryos is mediated in part by the IGF pathway (Kamei et al., 2011). Specifically, IGF pathway 387 

activity, stimulated by insulin receptor substrate 1 (IRS1)-mediated IGF signalling, helps 388 

maintain neural crest cell populations during hypoxia (Kamei et al., 2018). Reductions in 389 

neural crest cell numbers – either through ablation or by a combination of hypoxia and 390 

reduced IRS1-stimulated IGF signalling – prevents catch-up growth upon reoxygenation in 391 

zebrafish (Kamei et al., 2018).  392 

To our knowledge, the effects of CDH on cardiac mass in embryonic/larval fishes have not 393 

been directly studied, but there have been measurements of ventricular volume.  In zebrafish, 394 

hypoxia (3% O2) leads to a reduction in ventricular end diastolic and systolic volume at 96 hpf, 395 

but an increase at 5 days (Table S1B).  This suggests that hypoxia initially causes a reduction 396 
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in heart size in embryonic zebrafish, but cardiac enlargement occurs once they reach the 397 

larval stages.  Interestingly, in vivo imaging of zebrafish larvae has shown that brain blood 398 

flow is unchanged by hypoxia (Schwerte et al., 2003), despite an overall redistribution of 399 

blood to the red layer of muscle to enhance O2 uptake at seven days post fertilisation (dpf). 400 

This suggests that although blood flow distribution is changed, the brain-sparing effect is 401 

absent (El‐Fiky and Wieser, 1988). Although these studies have only been performed on one 402 

species, it is possible that the brain-sparing effect is unnecessary in fish. Instead, blood is 403 

redistributed towards the muscle to enhance O2 uptake to the body.  404 

Effect of CDH on O2 carrying capacity and cardiac function in fishes 405 

Like other vertebrates (Galli et al., 2023), embryonic and larval fishes exposed to hypoxia 406 

trigger mechanisms to enhance O2 extraction. Stage-matched comparisons reveal a greater 407 

expression of the higher-O2 affinity embryonic haemoglobin in fish incubated in hypoxia (6% 408 

O2) compared to those in normoxia (Bianchini and Wright, 2013). Similarly, erythropoiesis is 409 

stimulated from 7dpf in hypoxic zebrafish larvae (Schwerte et al., 2003), and intersegmental 410 

blood vessel vascularisation is increased from 6dpf (Yaqoob and Schwerte, 2010). O2 411 

extraction may also be enhanced through the activation of O2-sensitive transcription factors, 412 

such as HIF. Lake whitefish and zebrafish embryos and larvae show hypoxia-induced, stage-413 

specific changes in the expression of HIF1a and its associated downstream targets, which are 414 

known to stimulate haematopoiesis (Wang and Semenza, 1996) and angiogenesis (Iyer et al., 415 

1998), and have been shown to enhance hypoxia tolerance in early life in some studies 416 

(Mandic et al., 2020; Robertson et al., 2014; Whitehouse and Manzon, 2019), but not others 417 

(Levesque et al., 2019). Finally, behavioural adaptations may also lead to increased O2 418 

extraction. For example, hypoxia (3% O2) has been shown to induce pectoral fin motions in 419 

zebrafish (from 2dpf) to aid O2 uptake (Jonz and Nurse, 2005), and acute hypoxia exposure 420 

causes suppression of O2 uptake while simultaneously increasing tail beat frequency – 421 

potentially in an attempt to reoxygenate the egg case – in little skate embryos (Di Santo et 422 

al., 2016). 423 

In addition to increasing O2 extraction, embryonic and larval fishes can also increase O2 424 

transport to the tissues through alterations in cardiovascular dynamics. During early 425 

embryogenesis under normal conditions, fishes rely on diffusion for the supply of O2 to their 426 
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respiring tissues (Burggren, 2004; Grillitsch et al., 2005). This has been demonstrated in 427 

developing zebrafish where, prior to ~14dpf, reducing the blood’s O2-carrying capacity elicits 428 

no changes in either cardiac output or anaerobic metabolism, implying that under standard 429 

conditions, there is no essential role for convective O2 (Jacob et al., 2002). However, this is 430 

not the case under hypoxic conditions. Zebrafish incubated in hypoxia (~10% O2) display 431 

greater heart rate and cardiac output than those in normoxia from 4dpf onwards, which is 432 

likely to increase convective O2 transport and act to complement the O2 obtained through 433 

diffusion to meet the organism’s total O2 demand (Grillitsch et al., 2005; Jacob et al., 2002). 434 

Interestingly, this implies that the afferent nervous system can sense and respond to hypoxia 435 

by increasing heart rate from 4 dpf, around 10 days before convective O2 transport is required 436 

under normoxic conditions. These studies suggest that CDH hastens the shift from diffusion 437 

to convection-based O2 provision in zebrafish embryos (Jacob et al., 2002), but further work 438 

is required on this topic. Similar to embryonic reptiles, there is evidence that these 439 

cardiovascular adjustments may improve hypoxia tolerance in the short-term, as PCrit is lower 440 

in hypoxic zebrafish (Robertson et al., 2014) and Atlantic salmon (Wood et al., 2019b) 441 

compared to that of normoxic counterparts.     442 

CDH also causes long-term changes in heart rate in embryonic zebrafish (Table S1D), but the 443 

magnitude and direction are variable.  In general, tachycardia is the dominant response for 444 

embryonic zebrafish exposed to relatively mild or moderate levels of hypoxia (8–10% O2) at 445 

temperatures of 28–31oC.  However, severe hypoxia (2–4% O2) causes bradycardia (Table 446 

S1D), which is mediated by a release of vagal tone or increase in catecholamines (Steele et 447 

al., 2011; Steele et al., 2009).  Nevertheless, cardiac output remains constant in chronically 448 

hypoxic larval or embryonic zebrafish due to an elevated stroke volume, and in some cases it 449 

is even increased (Cypher et al., 2018; Jacob et al., 2002; Moore et al., 2006; Yaqoob and 450 

Schwerte, 2010). Larval zebrafish subjected to hypoxia (4% O2) also have significantly 451 

increased gene expression of β1, β2a and β2b adrenergic receptors (Ars) at 4dpf relative to 452 

normoxic fish (Steele et al., 2009), and CDH increases cardiac responsiveness to agonists of 453 

adrenergic signalling and delays the onset of cholinergic control (see Glossary) in the rainbow 454 

trout (Miller et al., 2011).  However, sympathetic sensitisation in zebrafish is likely to be 455 

dependent on the duration of hypoxia exposure and developmental stage, as the expression 456 
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of β1AR does not change in whole zebrafish embryos (2dpf) exposed to only 12h or 24h of 457 

hypoxia (5% O2; (Ton et al., 2002; Ton et al., 2003).   458 

The long-term effects of CDH on fish growth and the cardiovascular system 459 

Despite the ecological importance, the long-term effects of CDH are poorly studied in fishes, 460 

and the results are highly variable.  Trout larvae exposed to CDH exhibit catch-up growth with 461 

a significantly greater increase in weight (278% versus 188%) and length (64% versus 27%), 462 

eventually leading to significantly larger fry body weights and lengths compared to controls 463 

(Johnston et al., 2013). In contrast, juvenile Chinook salmon and European seabass exposed 464 

to CDH during embryogenesis are significantly smaller than controls (Del Rio et al., 2019), and 465 

growth restriction in hypoxic zebrafish embryos also persists into adulthood (Table S1A).  466 

However, no effect of CDH has been found on body weight in adult Atlantic salmon (Wood et 467 

al., 2017). Collectively, these studies show that the long-term effect of CDH on body mass is 468 

extremely variable in teleosts, and it depends on multiple factors, including species and body 469 

temperature.   470 

To our knowledge, nothing is known about the long-term effects of CDH on juvenile and adult 471 

teleost cardiac structure or function.  However, there is evidence of differential cardiac gene 472 

expression in rainbow trout exposed to CDH, including that of the common house-keeping 473 

genes 18s ribosomal RNA and acidic ribosomal phosphoprotein, and protein expression of 474 

cardiac troponin I (Johnston et al., 2013).  Furthermore, previous work has shown that 475 

zebrafish cardiac morphology can be altered by other environmental stressors during 476 

development, including temperature and CO2 (see below), as well as crude oil and polycyclic 477 

aromatic hydrocarbons (for a review see (Takeshita et al., 2021).  Therefore, there is ample 478 

evidence that the fish heart is capable of developmental plasticity, but there is a distinct lack 479 

of studies on CDH.    480 

Although few studies have explicitly investigated hypoxic programming in the fish heart, 481 

several studies address aspects of whole-organism performance and fitness that potentially 482 

link to cardiac performance.  Hypoxic-incubated (10% O2) rainbow trout show a consistently 483 

lower maximum relative swimming speed than normoxic controls across three 484 

developmental stages, which is thought to be caused by a delay in cardiac maturation 485 

(Johnston et al., 2013).  Zebrafish and Atlantic salmon larvae exposed to CDH also show an 486 
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improved whole-animal hypoxia tolerance. However, this phenotype does not persist into the 487 

juvenile and adult life stages  (Del Rio et al., 2021; Robertson et al., 2014; Vanderplancke et 488 

al., 2015; Wood et al., 2019a; Wood et al., 2017). In fact, European seabass larvae raised in 489 

hypoxia (8% O2) show a reduced hypoxia tolerance as juveniles, which is associated with an 490 

increased prevalence of opercular abnormalities (Cadiz et al., 2017). Similarly, 15 month-old 491 

Atlantic salmon exposed to CDH (10% O2) are marginally less hypoxia tolerant than normoxia-492 

incubated animals, although their aerobic scope is similar (Wood et al., 2017), and there is no 493 

effect of CDH (10% O2) on hypoxia tolerance in juvenile Chinook salmon (Del Rio et al., 2021). 494 

Nevertheless, the physiological response to hypoxia can be affected by CDH in some fish.  For 495 

example, when seabass are exposed to hypoxia as juveniles, fish that experienced hypoxia 496 

during embryogenesis show different changes in haemoglobin sub-type expression, but no 497 

differences in overall haemoglobin concentration (Cadiz et al., 2017).   498 

Climate change and the interactive effects of CDH with other stressors 499 

Oviparous vertebrates rarely experience CDH in isolation because other developmental 500 

stressors often occur simultaneously (Box 2).  Indeed, under natural conditions, CDH often 501 

occurs alongside fluctuations in CO2, temperature, pH and salinity.  Given that climate 502 

change is increasing the magnitude and frequency of these events, it is becoming 503 

increasingly important to study these interactive effects.    504 

Interactive effects of CDH and temperature 505 

Although maternal nest choice and behaviour may partly shield terrestrial embryos from 506 

thermal stress, recent models suggest that global warming will increase the incubation 507 

temperatures of avian and reptilian eggs (Du et al., 2023; DuRant et al., 2019).  Extensive 508 

research has shown that thermal stress can dramatically alter the morphology and physiology 509 

of reptilian and avian embryos, including changes in growth, body mass, cardiac mass, heart 510 

rate, mitochondrial density and respiration (Ben-Ezra and Burness, 2017; Du et al., 2023; Du 511 

and Shine, 2015; Du et al., 2010; Singh et al., 2020).  Although data is scarce, some studies 512 

have investigated the interactive effects of temperature and hypoxia in avian and reptilian 513 

embryos.   For example, Lourens et al. (2007) undertook a study in chickens where incubation 514 

temperature was increased from 37.8°C to 38.9°C at either 17% or 21% O2.  Temperature and 515 

hypoxia had independent effects on hatch time, body weight, yolk-free body weight and 516 
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relative heart weight; however, there were no interactions between O2 and temperature 517 

(Lourens et al., 2007). Another study in chickens found that mild levels of hypoxia (17% O2) 518 

did not produce any effects on embryonic body mass or heart mass, even when temperature 519 

was increased from 37.8 or 38.9oC (Table S1A).  By contrast, the negative effects of hypobaric 520 

hypoxia (2877m, 15% O2 SLE) during embryonic development on body mass, swimming speed 521 

and heart rate in adult viperine snakes at 28oC disappear when temperature is reduced to 522 

24oC (Souchet et al., 2020a; Souchet et al., 2020b).  Interestingly, increasing the temperature 523 

to 32oC produces a completely different phenotype, with a reduced heart rate, smaller body 524 

mass and faster swimming speed.  The surprising improvement in swimming performance in 525 

adult snakes at high altitude at the warmest temperature persisted after relocation to low 526 

elevation (Souchet et al., 2020a).  The authors suggest that constraints on development may 527 

be offset by the preservation of performance traits (perhaps through cardiorespiratory 528 

plasticity).  Collectively, these studies suggest that the vertical colonisation potential of 529 

reptiles and birds (see below) will be affected by the interaction between temperature and 530 

O2 availability.  531 

 532 

Interestingly, a recent meta-analysis found that aquatic embryonic ectotherms are more 533 

than three times as plastic as terrestrial ectotherms when exposed to thermal stress during 534 

development (Pottier et al., 2022).  Indeed, a large body of literature has shown that an 535 

increase in developmental temperature affects embryonic and larval fish growth rate, sex 536 

ratio, body size, metabolism, heart rate, cardiac morphology, hypoxia tolerance and 537 

swimming performance (Dimitriadi et al., 2018; Eme et al., 2015; Melendez and Mueller, 538 

2021; Mueller et al., 2011; Pelster, 1999; Vagner et al., 2019; Zambonino-Infante et al., 539 

2013).  Some of these studies found effects that lasted into adulthood, including increased 540 

ventricular roundness in juvenile and adult male zebrafish exposed to elevated 541 

temperatures during embryogenesis (Dimitriadi et al., 2018; Dimitriadi et al., 2021).  542 

However, the short and long-term effects of developmental temperature are highly variable 543 

in fish, and interestingly, the same meta-analysis found that persistent effects on thermal 544 

tolerance limits in adulthood were surprisingly weak (Pottier et al., 2022).  Whether the 545 

same is true when elevated temperature occurs in combination with hypoxia is largely 546 

unknown, because surprisingly little is known about this interaction.  One study on Chinook 547 

salmon investigated developmental outcomes in fish that were reared from fertilization to 548 
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the fry stage at two temperatures (10°C and 14°C) and two O2 levels (100% or 50% air 549 

saturation).  Although temperature and O2 saturation had independent effects on growth 550 

and acute hypoxia tolerance, there was no interaction between the two stressors (Del Rio et 551 

al., 2019).  This was also the case in European sea bass exposed to different temperature 552 

and hypoxia combinations (40% or 100% air saturation x 15 °C and 20 °C) from the flexion 553 

stage until the end of larval development (Cadiz et al., 2018). However, there were 554 

significant interactions on hatching success and thermal tolerance in Chinook salmon, with 555 

higher temperature generally potentiating the effects of hypoxia (Del Rio et al., 2019). 556 

Lastly, CDH causes an increase in cardiac output and heart rate in zebrafish embryos at 25–557 

31oC, but the magnitude of the response is lowest at 31oC, presumably because the fish had 558 

neared their maximal cardiovascular capacity (Jacob et al., 2002).  Clearly, more studies are 559 

warranted and necessary to understand the physiological implications of temperature and 560 

hypoxia interactions during development.  561 

 562 

Climate-driven elevational range shifts and high-altitude acclimatization  563 

Global warming is driving some reptilian and avian species to shift their geographical 564 

distributions towards higher-elevation habitats with lower O2 availability (Neate-Clegg and 565 

Tingley, 2023; Rubenstein et al., 2023).   Developmental plasticity will therefore play a 566 

pivotal role in successful colonization of high-altitude environments.  One approach to 567 

predicting the effects of climate-driven elevational range shifts is the so-called ‘transplant’ 568 

experiment, whereby gravid females or embryos from one elevation are transported and 569 

maintained at another.  In this regard, recent work on the viperine snake has been 570 

particularly insightful, because this species has repeatedly migrated across elevational 571 

gradients to colonise high-altitude environments, in association with historical warming and 572 

cooling cycles (Gómez and Lunt, 2007).  Transplanting viperine snake embryos at 28oC from 573 

436m (20% O2 SLE) to 2877m (15% O2 SLE) increases heart rate, reduces body mass and 574 

decreases swimming ability (Souchet et al., 2020b).  Importantly, post‐hatching reciprocal 575 

transplant of snakes back to 436m does not fully recover swimming performance, and the 576 

response is significantly temperature sensitive (see temperature section, above).  Similar 577 

results were found in common wall lizards, where transplantation of embryos from sea-level 578 

to 2877m (15–16% O2 SLE) leads to suppressed embryonic metabolism, cardiac hypertrophy 579 

and larger eggs that produce hatchlings with relatively low mass (Cordero et al., 2017).  In 580 
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contrast,  transplantation of lowland Mongolia racerunner lizards to 2036m (16–17 O2 SLE) 581 

had no effect on embryonic development (hatching time and success) or hatchling 582 

phenotypes (body size and locomotor performance), which suggests this species can buffer 583 

the impact of hypobaric hypoxia (LI et al., 2020).    584 

Another approach to predicting the effects of climate-driven elevational range shifts is to 585 

compare embryonic outcomes in native highland versus native lowland individuals from the 586 

same species.  These types of studies reveal genetic adaptations that arise over successive 587 

generations. Perhaps unsurprisingly, numerous studies have clearly shown that embryonic 588 

highland oviparous species are less sensitive to hypoxia than their lowland counterparts.  589 

For example, there is no effect of 12% O2 exposure on embryonic body weight in geese 590 

raised at high altitude (1600m, Table S1A), and hatchling masses of high-altitude coots 591 

(4100m) are similar or slightly greater than those at sea-level (Carey et al., 1989).  Native 592 

high-altitude ptarmigan and coot embryos (4200m; (León-Velarde and Monge-C, 2004) and 593 

bar-headed goose embryos (Snyder et al., 1984) have a greater O2-carrying capacity than 594 

their sea-level counterparts, with increased hematocrit, haemoglobin, capillary density and 595 

blood O2 affinity.  Adult fishes from high-altitude habitats in China also possess adaptations 596 

related to haemoglobin, as well as expansions of gene families associated with energy 597 

metabolism, ion transport and the response to hypoxia (Kang et al., 2017; Lei et al., 2021; 598 

Tong et al., 2017).  Lastly, cardiac citrate synthase activity in white-tailed ptarmigan (4200m) 599 

is higher than that of its sea-level counterparts, suggesting increased mitochondrial density 600 

and oxidative capacity (Carey and Martin, 1997). These studies demonstrate that prolonged 601 

high-altitude residence in oviparous vertebrates confers some protection against hypobaric 602 

hypoxia (similar to humans; (Giussani et al., 2001), and this is associated with adaptations in 603 

both O2 carrying capacity and utilisation.  Nevertheless, living at high altitude for six 604 

successive generations does not completely protect chicken embryos from the effects of 605 

hypobaric hypoxia.  Growth restriction in chickens is improved by high-altitude residence, 606 

but there is still a significant reduction in embryonic body mass with hypobaric hypoxia, as 607 

well as cardiac hypertrophy, ventricular wall thickening, aortic medial thickening and an 608 

increase in adrenal catecholamines (Giussani et al., 2007; Salinas et al., 2010; Salinas et al., 609 

2011).  The effects can be prevented if high-altitude hens are given O2 supplementation, 610 

which confirms that hypoxia rather than hypobaria is driving the cardiovascular response.  611 
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Furthermore, the effects persist into adulthood when chickens are maintained at high 612 

altitude for a further 6 months, and there is also evidence of pulmonary hypertension, right-613 

sided heart dysfunction and hypotension (Herrera et al., 2013; Salinas et al., 2014).  614 

Interestingly, American alligators exposed to CDH and maintained in hypoxia into juvenile 615 

life also have signs of pulmonary hypertension, including a decreased ratio of the right 616 

ventricle to left ventricle (Owerkowicz et al., 2009).  Collectively, these studies suggest some 617 

of the problems associated with CDH in chickens cannot be prevented by residence at high 618 

altitude (at least across six generations) and post-hatch exposure to hypoxia may cause 619 

further damage, including pulmonary hypertension.   Whether later generations would 620 

eventually evolve better protection awaits investigation.   621 

Potential interactive effects of CDH and CO2 concentration  622 

Despite the fact that oviparous vertebrates often experience hypoxia and hypercapnia 623 

simultaneously (both naturally and in climate change scenarios; Box 2), we are unaware of 624 

any studies that have investigated the combined effects of CDH and chronic hypercapnia.  625 

There are however, several studies that have shown interactive effects of acute hypoxia and 626 

hypercapnia (< 1 day) on chick embryonic O2-carrying capacity and acid–base balance 627 

(Andrewartha et al., 2011; Andrewartha et al., 2014; Burggren et al., 2023; Burggren et al., 628 

2012; Mueller et al., 2017).   Furthermore, there is ample evidence that embryonic growth 629 

and cardiovascular outcomes can be affected by chronic hypercapnia alone, even at 630 

physiological levels.  For example, exposure of embryonic chickens and ducks to CO2 631 

concentrations that they would normally encounter in the nest (1%) or higher (4%) 632 

increases body mass, compared to atmospheric levels (0.004%), and this effect persists into 633 

adulthood (De Smit et al., 2006; El-Hanoun et al., 2019; Everaert et al., 2007; Fares et al., 634 

2012; Verhoelst et al., 2011).  A similar observation has been made in common snapping 635 

turtles exposed to 3.5% CO2 (Wearing et al., 2014), and American alligator embryos exposed 636 

to 3.5% and 7% CO2 have increased relative heart mass and reduced arterial blood pressure 637 

(Eme and Crossley, 2015).   Lastly, embryonic chickens and ducks exposed to 1% CO2 have 638 

increased embryonic hemoglobin, packed cell volume (proportion of blood made up of cells) 639 

and red blood cell count (El-Hanoun et al., 2019; Fares et al., 2012).  Collectively, these 640 

studies suggest that hypercapnia during development could offset hypoxic growth 641 
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restriction in birds and reptiles, and it could potentiate some of the cardiovascular 642 

responses to hypoxia.   643 

A large body of evidence suggests that juvenile and adult fish possess sufficient acid–base 644 

and osmoregulatory capabilities to tolerate very high CO2 levels (> 2000 µatm; Murray et al., 645 

2016).  However, a recent metanalysis confirmed that fish embryos and larvae are 646 

significantly more sensitive to hypercapnia than their adult counterparts (Cattano et al., 647 

2018).  Indeed, embryonic or larval fish have significantly higher levels of mortality and 648 

reduced growth at PCO2 levels consistent with climate change projections (~1000 atm).   The 649 

increased sensitivity is likely due to ontogenic differences in respiration modes (dermal 650 

versus gills) and insufficient acid–base regulation prior to gill formation (Ishimatsu et al., 651 

2008).  There is also evidence that chronic hypercapnia affects cardiac function in some 652 

larval fish species.  Chronic exposure to PCO2 at ~1100–1300 μatm causes tachycardia in 653 

Pacific herring, garfish and zebrafish larvae (Alter and Peck, 2021; Miller, 2013; Villalobos et 654 

al., 2020).  However, numerous other studies have found no effect of hypercapnia on 655 

growth, heart rate, haemoglobin and mitochondrial function, and some have even found 656 

increased growth (Esbaugh, 2018; Leo et al., 2018; Mu et al., 2015; Scheuffele, 2017; Sun et 657 

al., 2019).  Therefore, although there is certainly a case to study the interaction between 658 

hypercapnia and hypoxia in fish embryos and larvae, the effects may be relatively modest 659 

compared to those of temperature.   660 

Conclusions and perspectives 661 

Oviparous ectotherms produce viable young when eggs are exposed to CDH, but there are 662 

numerous effects on the cardiovascular system at multiple levels of biological organisation, 663 

both during development and in postnatal life (Figure 1).  Despite vastly different cardiac 664 

designs and body temperatures, the embryonic cardiovascular responses are generally well 665 

conserved among vertebrates, and include asymmetric growth restriction, relative cardiac 666 

enlargement, alterations in heart rate, enhanced sympathetic activity and an increase in O2-667 

carrying capacity.  In the long term, these phenotypic changes programme cardiovascular 668 

abnormalities in chickens that are very similar to those of mammals, leading to reduced 669 

cardiac performance and pathological cardiovascular signatures. The impact of CDH in 670 

American alligators and snapping turtles is less severe in juvenile life and may even be 671 

beneficial under circumstances of increased physiological stress. This suggests that the 672 
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increased metabolic demand associated with endothermy places an additional burden on the 673 

avian and mammalian heart. 674 

 675 

Unsurprisingly, the embryonic and postnatal response to CDH depends on the severity of 676 

hypoxia. In birds and reptiles, most responses are only evident at O2 concentrations at or 677 

below 15% saturation.  These levels of O2 are commonly experienced by many embryonic 678 

reptilian species, which suggests that CDH is a significant driver of individual variation.  In 679 

contrast, most lowland embryonic avians are unlikely to experience O2 concentrations below 680 

20% O2, which makes CDH less ecologically relevant.  However, megapode species develop at 681 

O2 concentrations below 15%, so it would be interesting to see whether these species are 682 

uniquely adapted to hypoxia.  The situation in fishes is far more complex, and there doesn’t 683 

seem to be any obvious O2 threshold for a cardiovascular response, even within the same 684 

species.  This is probably because the levels of CDH are much more severe in the fish studies 685 

(45–95% reduction in O2) versus the avian and reptilian studies (20–50% reduction in O2), 686 

probably leading to higher levels of variation, and making comparisons between these groups 687 

complicated.  688 

More work needs to be done to characterise the phenotypic responses and thresholds for 689 

CDH in the presence of other stressors, such as hypercapnia and temperature in all oviparous 690 

vertebrate groups.  Interestingly, hypercapnia alone appears to have both synergistic and 691 

antagonistic responses to hypoxia in oviparous vertebrates, which means that the 692 

combination of these two stressors is expected to produce entirely different phenotypes.  This 693 

is relevant to normal development because reptiles and birds experience hypoxia and 694 

hypercapnia simultaneously, and most studies use non-physiological levels of CO2 when 695 

investigating hypoxia. It is also important in the context of climate change because the 696 

prevalence and intensity of hypercapnia is increasing, particularly in aquatic environments. 697 

Unsurprisingly, warming temperatures exacerbate the effects of developmental hypoxia in 698 

some oviparous species, which is concerning considering global warming and the increased 699 

prevalence and intensity of heat waves. The timing of extreme weather events is also crucial, 700 

because most species possess critical windows in development where the cardiovascular 701 

system is especially sensitive to stress. Furthermore, we expect species with faster 702 

developmental rates and shorter gestations to be disproportionately affected by heat waves 703 
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and extreme weather events, compared to shorter-gestation species, because a greater 704 

proportion of their development will be affected.  Obviously, the challenge is to study the 705 

integrative effects of CDH, hypercapnia and warming on embryonic and adult phenotypic 706 

outcomes.  In this regard, it is also critically important to gather accurate data about the 707 

effects of climate change on nest gas tensions and temperatures.   708 

Future work should also focus on transplantation studies to determine the effects of high-709 

altitude acclimation on reptilian and avian developmental outcomes.  Studies like these are 710 

important because the phenotypic response to high-altitude hypoxia in lowland species will 711 

ultimately determine the colonization potential of these animals as the planet continues to 712 

warm.  From the limited data available, it is clear that reptiles and birds respond to 713 

hypobaric hypoxia in a similar fashion to isobaric hypoxia, and some of the traits cannot be 714 

reversed by returning the animals to sea level.  Long-term residence at high altitude affords 715 

protection in most avian and reptilian species, but domestic chickens raised at high altitude 716 

for six generations still undergo some level of growth restriction and cardiac remodelling in 717 

response to CDH.  Importantly, the phenotype worsens with continued exposure to hypoxia 718 

post-hatch.  Clearly, more multigenerational studies are necessary to understand the impact 719 

of cardiovascular plasticity on the vertical colonisation potential of oviparous birds and 720 

reptiles.   721 

Lastly, there are some questions in this field that are almost completely unstudied.  For 722 

example, our understanding of the effects of CDH and other stressors on the amphibian 723 

cardiovascular system is severely lacking.  This is surprising, as this class of vertebrates is one 724 

of the most likely to experience fluctuations in developmental O2, CO2 and temperature (Box 725 

2).  There is also very little known about sex-dependent differences in the response to CDH 726 

among oviparous vertebrates.  It is well established in the mammalian literature that 727 

cardiometabolic responses to developmental stressors are strongly sex-dependent, with 728 

females often being protected against detrimental long-term health outcomes compared to 729 

males (Giussani, 2021; Sandovici et al., 2022). Sex-dependent differences have been observed 730 

in some avian studies, but these effects are largely unstudied in ectothermic vertebrates.  731 

Similarly, the transgenerational effects of CDH and the underlying epigenetic mechanisms are 732 

very poorly studied in oviparous vertebrates. In this regard, several studies have shown that 733 

parental exposure to hypoxia can improve hypoxia tolerance in zebrafish offspring (Burggren, 734 
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2014; Ragsdale et al., 2022). These kinds of phenomena are particularly important to study, 735 

because transgenerational plasticity will play a crucial role in determining a species’ ability to 736 

cope with a rapidly changing environment (Donelson et al., 2018).  737 

 738 

Box 1:  Incidence and prevalence of chronic developmental hypoxia in oviparous 739 

vertebrates 740 

Although most avians develop at atmospheric levels of O2 (~21% saturation), megapode birds 741 

bury their eggs in mounds where O2 concentration can range from 13 to 17% (Seymour and 742 

Ackerman, 1980). Certain reptiles also exhibit this behaviour (mainly crocodilians and 743 

chelonians), with some nest O2 concentrations as low as 10% (Seymour and Ackerman, 1980). 744 

Hypoxia develops in these nests because of gas diffusion limitations, embryonic metabolism, 745 

the decomposition of matter and the activity of microorganisms (Seymour and Ackerman, 746 

1980). Subterranean nests are also prone to flooding, which can cause unpredictable 747 

temporal changes in O2 (Doody and Refsnider, 2023).  Many birds and reptiles also experience 748 

hypobaric hypoxia as a consequence of living at high altitude (1500 to 6500m), where 749 

effective O2 concentrations can range between 10 and 19% (sea-level equivalent; León-750 

Velarde and Monge-C, 2004). However, the most severe levels of hypoxia are observed in 751 

aquatic environments, because O2 concentration and diffusion rates are lower in water than 752 

in air, and they change diurnally and seasonally (Wu, 2009). For example, fish that develop in 753 

intertidal environments can transition from hyperoxia (four times air saturation) to severe 754 

hypoxia (5% O2 saturation) and even anoxia (zero O2) within 24 hours (Richards, 2011). 755 

Similarly, seasonal increases in temperature can create hypoxic zones in freshwater and 756 

marine environments due to evaporation and stratification.  This is particularly disruptive for 757 

sessile species that have protracted embryonic periods, such as elasmobranchs. Lastly, even 758 

in fast-flowing, well-aerated environments, embryos often experience hypoxic conditions due 759 

to low water-flow rates within the egg mass (Dhiyebi et al., 2013). These factors make fish 760 

embryos particularly vulnerable to chronic developmental hypoxia.  761 

 762 

BOX 2:  Interactions between chronic developmental hypoxia and other environmental 763 

stressors 764 
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The phenotypic effects of chronic developmental hypoxia can be modulated by other 765 

naturally occurring or anthropogenic environmental stressors, most commonly temperature 766 

and CO2. In avian and reptilian nests, hypercapnia naturally occurs in parallel with hypoxia 767 

because embryonic CO2 production increases as the organism respires. Nest CO2 768 

concentrations usually rise from ~0.05% to 1.4%, but levels can increase to 4–12% when large 769 

amounts of decaying vegetation are present (Seymour and Ackerman, 1980). Similarly, CO2 770 

fluctuations within aquatic environments can arise from natural phenomena, including 771 

variations in photosynthesis and respiration rates, wind speed and direction, ecosystem 772 

metabolism, convective mixing and ice phenology (Golub et al., 2023).  All these factors are 773 

influenced by temperature, which can vary dramatically in terrestrial and aquatic 774 

developmental environments, both spatially and temporally (Du et al., 2019). Unfortunately, 775 

climate change and other anthropogenic activities are increasing the intensity of these 776 

environmental interactions.  Extreme weather events, such as heat waves and flooding, are 777 

likely to increase the magnitude and duration of hypoxia and hypercapnia in terrestrial nests 778 

(Doody and Refsnider, 2023). Within aquatic environments, global warming and extreme 779 

heatwaves are increasing water temperatures in rivers (van Vliet et al., 2023), lakes (Woolway 780 

et al., 2022) and oceans (Benthuysen et al., 2020).  Furthermore, the combination of 781 

eutrophication (see Glossary) and warming is increasing the prevalence and intensity of 782 

hypoxic zones.  Oceanic CO2 levels are projected to increase from 410 to 1400 µatm by the 783 

year 2100, leading to a reduction in seawater pH of up to 0.4 units (Henson et al., 2017). 784 

Recent studies have shown that CO2 is also increasing in freshwater systems (Phillips et al., 785 

2015). This problem is further confounded by anthropogenic eutrophication, which also leads 786 

to aquatic hypercapnia due to the decomposition of algal blooms (Cai et al., 2011).  It is 787 

therefore critically important to study the interactive effects of hypoxia, hypercapnia and 788 

temperature on embryonic phenotypic outcomes.  789 

 790 

 791 

 792 
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 793 

Figure 1:    Effects of chronic developmental hypoxia (CDH) on the cardiovascular system (CVS) of oviparous vertebrates.  CDH often develops 794 
in the nests of oviparous birds, reptiles and fish (see Box 1 for details).  CDH can alter embryonic cardiovascular structure and function at multiple 795 
levels of biological organisation, and some of these abnormalities persist into adulthood (see Table S1 for full details of species-specific 796 
differences.  The effects of CDH can be modulated by other environmental stressors that occur during development, including hypercapnia and 797 
warming.    This figure has been created with Biorender (Agreement number: NG25JUBP7L).798 
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Supplementary Table 1:  Effects of chronic developmental hypoxia on body mass and cardiovascular parameters in avians, reptiles and fish  
AVIANS Stage Body 

Temp 
(oC) 

[O2] 
Control 

[O2] 
Hypoxia 

(A) Body mass (B) Heart mass (C) 
Heart-
body 

weight 
ratio 

(D) Heart rate (E) O2 
carrying 
capacity  

(F) Mito 
capacity 

(G) Cardiac 
Fibrosis  

(H) Sympathetic  
activity 

     Emb Juv or 
Adult 

Emb Juv or 
Adult 

Emb Emb Juv or 
Adult 

Emb Emb Juv or 
Adult 

Emb Juv or 
Adult 

Emb Juv or 
Adult 

Gallus gallus 
domesticus 

(leghorn):  20-
21 days 

1-6 
doi 

 

37.5 
 

21%O2 
 

15%O2 
 

↓ 1  
━ 2 
 

 ━1,2 
 

━ 1    ━ 1 
 

      

 6-12 
doi 

 

37.5 
 

21%O2 
 

15%O2 
 

↓ 1 
 

 ↑ 1 
 

━ 1    ↑ 1 
 

      

 6-19 
 doi 

 

38 
 

21%O2 
 

15%O2 ↓ 3-7    
 

━ 4 ↑ 3 
 ━ 5 

↓6 
 

 ↑ 3,5 
━ 6 

 

   ↓ 6 
 

   ↑ 7  
 

 

 7-14 37.5 21%O2 15%O2 ↓ 8 
 

      ↑ 8       

 12-18 
doi 

 

37.5 21%O2 15%O2 ↓ 1 
 

 ━ 1 
 

━ 1    ━ 1 
 

      

 16-18 
doi 

 

37.5 21%O2 15%O2 ↓ 9 
 

 ↓ 9 
 

           

 0-19 & 
1-20 
doi 

 

37.5 21%O2 15%O2 ↓ 10-16  ↓ 10,15  ━ 10 
↑11,13 

 

━ 
14,16 

 ↑ 12,15    ↑ 15   

 0-21 
doi 

37.5 21% O2 14% O2 ↓17,18  ↓17,18     ↑17,18 
 

      

 1-21 
doi 

38 21%O2 HB:  
13%O2 

↓ 19            ↑ 19  
 

 

 0-20 
doi 

38 21% O2 HB:  
13%O2 

↓ 20       ↑ 20       
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AVIANS Stage Body 
Temp 
(oC) 

[O2] 
Control 

[O2] 
Hypoxia 

(A) Body mass (B) Heart mass (C) 
Heart-
body 

weight 
ratio 

(D) Heart rate (E) O2 
carrying 
capacity  

(F) Mito 
capacity 

(G) Cardiac 
Fibrosis  

(H) Sympathetic  
activity 

     Emb Juv or 
Adult 

Emb Juv or 
Adult 

Emb Emb Juv or 
Adult 

Emb Emb Juv or 
Adult 

Emb Juv or 
Adult 

Emb Juv or 
Adult 

Gallus gallus 
domesticus 

(bovans 
brown):  20-21 

days 

1-21 
doi 

37.9 21%O2 14%O2 ↓ 21-23  ↓ 23 ↑ 21  ━ 21   ↑ 22,23 ↓ 22     ↑ 23 

 
Gallus gallus 
domesticus 

(broiler): 20-21 
days 

1-21 
or 0-

19 doi 

37.8 
 

21%O2 14%O2 
 

↓ 24-26    
 
 

━ 24            
↓ 25  

 

━ 25 ━ 25 ↑ 24 
 

━ 26      ━ 25 ↑ 24,26   ↓ 24  
↑ 25 

 1-20 
doi 

 

37.8 21%O2 15%O2 ↓ 10 
 

 ↓ 10 
 

 ↓ 10 
 

         

 6-19 
doi 

37.8 21%O2 15%O2 ↓ 4        ↓ 4 ↑ 4            

 9-19 37.8 21%O2 17%O2 ━ 27  ━ 27            
  38.9 21%O2 17%O2 ━ 27  ━ 27            

 
Gallus gallus 

(red 
junglefowl): 
19-21 days 

1-20 
doi 

37.8 21%O2 15%O2 ↓ 10  ↓ 10  ↓ 10          

 
Branta 

canadensis 
(Canada 
goose) 
28 days 

0-28 37 16%O2 12%O2 ━ 28,29       ↑ 29       

 
Anser indicus 
(bar-headed 

goose): 27-30 
days 

0-28 37 16%O2 12%O2 ━ 28              
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REPTILES  Stage Body 
Temp 
(oC) 

[O2] 
Control 

[O2] 
Hypoxia 

(A) Body mass (B) Heart mass (C) 
Heart-
body 

weight 
ratio 

(D) Heart rate (E) O2 
carrying 
capacity  

(F) Mito 
capacity 

(G) Cardiac 
Fibrosis  

(H) Sympathetic  
activity 

     Emb Juv or 
Adult 

Emb Juv or 
Adult 

Emb Emb Juv or 
Adult 

Emb Emb Juv or 
Adult 

Emb Juv or 
Adult 

Emb Juv or 
Adult 

American 
alligator 
(Alligator 

mississippien
sis): 63-68 

days 

0-90% 30 21%O2 10%O2 ↓ 30-34      ━ 35-

37  
↓38,39 

   

━ 
30,31 

 ↑ 30,31 ↓ 
 

30,33,34 

━ 35 ↑ 40 ━ 38 ↑ 38     

 0-80% 30 21%O2 10%O2 ↓ 30,34  ━ 30  ↑  30 
 

↓34 

━ 30 
 

        

 0-70% 30 21%O2 10%O2 ━ 30 
↓ 33,34 
 

 ━ 30  ━ 30 ━ 30 
↓ 33,34 

 

      ↑ 34  

 0-60% 30 21%O2 15%O2 ━ 30 
 

 ━ 30  ━ 30 ━ 30 
 

        

 0-90% 30 21%O2 15%O2 ━ 30 
 

 ━ 30  ━ 30 ━ 30 
 

        

 0-80% 30 21%O2 15%O2 ━ 30 
 

 ━ 30  ━ 30 ━ 30 
 

        

 0-70% 30 21%O2 15%O2 ━ 30 
 

 ━ 30  ━ 30 ━ 30 
 

        

 0-60% 30 21%O2 15%O2 ━ 30 
 

 ━ 30  ━ 30 ━ 30 
 

        

 
Snapping 

turtle 
(Chelydra 

serpentina): 
80-90 days 

0-90% 30 21%O2 10%O2 ↓ 41-43      ↓ 44 
 

━ 45-

47 

↑ 43  ↑ 41-

43,48 
━ 41 

 

↑ 42 
 

 ↑ 49  ↑ 47   ↑ 42 
 

 

 0-70% 30 21%O2 10%O2 ↓ 41-43  ━ 43  ↑ 
41,42,48 

 
━ 43 

━ 
41,42 

 

       ↑ 38   ↑ 42 
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REPTILES  Stage Body 
Temp 
(oC) 

[O2] 
Control 

[O2] 
Hypoxia 

(A) Body mass (B) Heart mass (C) 
Heart-
body 

weight 
ratio 

(D) Heart rate (E) O2 
carrying 
capacity  

(F) Mito 
capacity 

(G) Cardiac 
Fibrosis  

(H) Sympathetic  
activity 

     Emb Juv or 
Adult 

Emb Juv or 
Adult 

Emb Emb Juv or 
Adult 

Emb Emb Juv or 
Adult 

Emb Juv or 
Adult 

Emb Juv or 
Adult 

 
Florida red-
bellied turtle 
(Pseudemys 

Nelson): 45-80 
days   

0-90% 30 21%O2 10%O2 ↓ 49  ━ 49  ↑ 49   ↑ 49       

 
Leopard gecko 
(Eublepharis 
macularius): 
45-53 days 

0-70% 34 21%O2 Regional 
hypoxia 

↓ 50  ↓ 50  ↑ 50           ↑ 38     

 0-70% 28 21%O2 Regional 
hypoxia 

↓ 50  ↓ 50  ↑ 50          

 
Banded red 

snake 
(Lycodon 

rufozonatu): 
50 days 

10-
100% 

28 21%O2 Regional 
hypoxia 

━ 51    ↑ 51          

 
Chinese 

softshell turtle 
(Pelodiscus 
sinensis): 60 

days 

0-
100% 

28 21%O2 Regional 
hypoxia 

━ 51    ━ 51          

                   
Common wall 

lizard 
(Podarcis 

muralis):  42-
77 days 

0-
100% 

24 21%O2 HB 
15%O2 

↓ 52 
 
━ 53 
 

 ↑ 52   ↓ 52,53         

 0-
100% 

24 21%O2 HB 
17%O2 

━ 53     ↓ 53         
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Viperine snake 
(Natrix maura) 

0-
100% 

24 21%O2 HB 
15%O2 

━ 54     ━ 54         

 0-
100% 

28 21%O2 HB 
15%O2 

↓ 55     ↑ 55         

 0-
100% 

32 21%O2 HB 
15%O2 

↓ 54     ↓ 54         

Class and 
species 

Stage Body 
Temp 
(oC) 

[O2] 
Control 

[O2] 
Hypoxia 

(A) Body mass (B) Heart mass (C) 
Heart-
body 

weight 
ratio 

(D) Heart rate (E) O2 
carrying 
capacity  

(F) Mito 
capacity 

(G) Cardiac 
Fibrosis  

(H) Sympathetic  
activity 

FISH     Emb Juv or 
Adult 

Emb Juv or 
Adult 

Emb Emb Juv or 
Adult 

Emb Emb Juv or 
Adult 

Emb Juv or 
Adult 

Emb Juv or 
Adult 

Zebrafish 
(Danio rerio): 

3-4 days 

0-2 
dpf 

25 6.5 
mg/L 

0.8 
mg/L 

     ↓ 56         

 1-5 
dpf 

25 7.5 
mg/L 

3.8 
mg/L 

━ 57  ↑ 57   ↑ 57         

 0-1 
dpf  

28 7.5 mg 
/L 

4.3 mg 
/L 

━ 58      ↓ 58    ━ 58         

 0-1 
dpf 

28 6.5  
mg/L 

0.6  
mg /L 

↓ 59              

 2-4 
dpf 

28 100% 5%         ↓ 60      

 0-4 
dpf 

28 6 mg/L 1-2 
mg/L 

  ↓ 61,62   ↓ 61,62         

 1-15 
dpf 

28 7.5 
mg/L 

3.3 
mg/L 

↓63       ↑ 63       

 1-5 
dpf 

28 7.5 
mg/L 

3.8 
mg/L 

━ 57  ↑ 57   ↑ 57         

 5-9 
dpf 

28 7.5 
mg/L 

1.5 
mg/L 

     ↓ 64       ↑ 64   

 1-5 
dpf 

28 7.5 
mg/L 

1.5 
mg/L 

  ↑ 65   ↓ 65  ↑ 65       

 1-10 
dpf 

28 7.5 
mg/L 

1.5 
mg/L 

  ↑ 65   ↑ 65  ↑ 65       

 0-10 
dpf 

28 7.5 
mg/L 

1.5 – 1.9 
mg/L 

     ↓ 66         

 0-12 
dpf 

25 6.5 
mg/L 

0.8 
mg/L 

     ↓ 56         



46 
 

Class and 
species 

Stage Body 
Temp 
(oC) 

[O2] 
Control 

[O2] 
Hypoxia 

(A) Body mass (B) Heart mass (C) 
Heart-
body 

weight 
ratio 

(D) Heart rate (E) O2 
carrying 
capacity  

(F) Mito 
capacity 

(G) Cardiac 
Fibrosis  

(H) Sympathetic  
activity 

FISH     Emb Juv or 
Adult 

Emb Juv or 
Adult 

Emb Emb Juv or 
Adult 

Emb Emb Juv or 
Adult 

Emb Juv or 
Adult 

Emb Juv or 
Adult 

 0-3 
dpf 

28 7.5 
mg/L 

1.5 – 1.9 
mg/L  

     ↓ 66         

 0-30 
dpf 

28 7.5 mg 
/L 

4.3 mg 
/L 

━ 58        ↓ 58    ↑ 58         

 1-5 
dpf 

31 7.5 
mg/L 

3.8 
mg/L 

━ 57  ↑ 57   ↑ 57         

                   
Rainbow trout 
(Oncorhynchu
s mykiss): 60-

90 days 

25-36 
dpf 

10 10 mg 
/L 

5 mg /L ↓ 67              

 0-57 
dpf 

11 100% 34% ↓ 68          ↑68                

 0-45 
dpf 

10 100% 30% ↓ 69       ↑ 69       

 
Chinook 
salmon 

(Oncorhynchu
s tshawytsch): 

90-150 days 

0-1 
dph 

10 10 mg 
/L 

5.5 mg 
/L 

 ↓70             

 0-1 
dph 

15 10 mg 
/L 

5.5 mg 
/L 

 ↓70             

 
Small-spotted 

catshark 
(Scyliorhinus 

canicula): 240-
270 days 

0-28  
wpf 

15 
and 
20 

100% air 
sat 

50% air 
sat 

━ 71              

 
Grass carp 

(Ctenopharyng
odon idellus): 

1-3 days 

0-1 
dpf 

22 7.0  
mg/L 

1.0 
mg/L 

↓ 72              
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Class and 
species 

Stage Body 
Temp 
(oC) 

[O2] 
Control 

[O2] 
Hypoxia 

(A) Body mass (B) 
Heart 
mass 

(C) Heart-body 
weight ratio 

(D) Heart rate (E) O2 
carrying 
capacity  

(F) Mito 
capacity 

(G) Cardiac 
Fibrosis  

(H) Sympathetic  
activity 

FISH     Emb Juv or 
Adult 

Emb Juv or 
Adult 

Emb Emb Juv or 
Adult 

Emb Emb Juv or 
Adult 

Emb Juv or 
Adult 

Emb Juv or 
Adult 

European 
seabass 

(Dicentrarchus
 labrax): 9 

days 

28-50 
dph 

15 7.35 
mg/L 

2.95 
mg/L 

━ 73       ↓ 73             

 28-50 
dph 

20 7.35 
mg/L 

2.95 
mg/L 

━ 73       ━ 73             

 30-38 
dph 

19 9.3 
mg/L 

3,7 
mg/L 

            ↓ 74             

 
Atlantic 

salmon (Salmo 
salar): 57-75 

days 

0-100 
dpf 

8 11.9 
mg/L 

5.96 
mg/L 

        ━ 75             

 
Abbreviations: HB, hypobaric hypoxic; dpf, days post fertilisation; dph, days post hatch; wpf, weeks post-fertilisation; di, days of incubation; %O2, % oxygen saturation.  Average gestation period for 
each species is given for each species in column 1.   

 
 
 
 
 
 
 
 
 
 
 
Supplementary Table 2:  Effects of chronic developmental hypoxia on mammalian body mass and cardiovascular parameters 

 
 
MAMMALS 

Stage 
(GD) 

Body 
Temp 
(oC) 

[O2] 
Control 

[O2] 
Hypoxia 

(A) Body mass (B) Heart mass (C) 
Heart-
body 
weight 
ratio 

(D) Heart rate (E) O2 
carrying 
capacity  

(F) Mito 
capacity 

(G) Cardiac 
Fibrosis  

(H) Sympathetic  
activity 
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     Fetal Juv or 
Adult 

Fetal Juv or 
Adult 

Fetal Fetal Juv or 
Adult 

Fetal Fetal Juv or 
Adult 

Fetal Juv or 
Adult 

Fetal Juv or 
Adult 

                   
Rat (Rattus 

norvegicus):  
21-23 days 

6-20 37 21%O2 13%O2 ━ 76-78      ━ 77 ━76,77 ━ 77 ━76,77  ━ 77 ↑78 ↓ 79  
━ 79 

                  ↑ 77 

 10-20 37 21%O2 12%O2       ━80                     ↑ 80  
 15-20 37 21%O2 10%O2 ↓81,82           ━ 81 ━82  ━82 ━82  ━ 81 ↑82       
 15-21 37 21%O2 10.5%O2 ↓83  ━83  ↑83      ↑83    
 15-21 37 21%O2 12%O2 ↓84,85        ━85   ━85     ↑85    
 15-21 37 21%O2 11%O2 ↓86       ━86 ↑86  ↑86       ↑86   

 
Mouse (Mus 

musculus): 19-
21 days 

14-20 37 21%O2 12%O2 ↓87            ━ 87          ↑87   

 6-18 37 21%O2 14%O2          ↑↓88     

 
Guinea pig 

(Cavia 
porcellus): 59 

– 72 days 

58-70 38 21%O2 12%O2 ━ 89              

 49-63 38 21%O2 10.5%O2 ↓90  ━90  ↑90      ↑90    
 35-60 38  Uterine 

Artery 
Constric

tion 

━ 91            ↓91             

 25-64 38 21%O2 10%O2 ↓ 92        ↑↓ 92      
 50-64 38 21%O2 10.5%O2 ↓ 92        ━ 93 

↓ 92 
↓ 94,95 
━ 95 

    

Supplementary Table 3:  Common pathological cardiovascular signatures in juvenile and adult vertebrates that were exposed to chronic 
developmental hypoxia 

Pathological signatures 
observed in mammals from 
hypoxic pregnancies 

Birds Crocodilians Squamates and 
testudines 

Fish 

     
Catch up growth 81,84,96-100 Yes 4,24                    (2/5) Yes 35-37               (3/5) Yes 45-47                  (3/4) Yes 68,73,75                  (3/9) 
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Increased heart/body weight 
ratio 85 

Yes 3,5,11,13,24        (5/10)    Yes 35-39               (4/4) Yes 46,47                  (2/3) Unknown 

Fibrosis 85,101,102 Yes 15                      (1/2) Unknown Unknown Unknown 
Ventricular wall thinning 99 Yes 15                      (1/2) Unknown Unknown Unknown 
Ventricular wall thickening 103  Yes 23,104                 (1/3) Unknown Unknown Unknown 
Aortic wall thickening 105 Unknown  Unknown No 106                     (1/1) Unknown 
Systemic hypertension 
22,80,100,102,105,107 

Yes 23                      (1/1) No 108                   (1/1) No 44,106                  (2/2) Unknown 

Enhanced Sympathetic tone 
96,98,109 

Yes 24                      (1/1) Yes 35,36                (2/2) Unknown Unknown 

Mitochondrial dysfunction 
88,94,95,107 

Unknown No 38                    (1/1) No 45,47                   (2/2) Unknown 

Increased sensitivity to 
hypoxia, anoxia or ischemia 
80,81,85,98,109-111 

Unknown  No 36,37,108            
(3/3) 

No 46,112                  (2/2) Unknown 

Diastolic dysfunction 85,103,109   Yes 15                      (1/3) No 36,39                (2/2) Unknown Unknown 
Systolic dysfunction 107 Yes 15,24                  (2/3) No 36,39                (2/2) Unknown Unknown 
Enhanced contractility 96,109 Yes 23                      (1/2) No 36                    (1/1) Unknown Unknown 
Pulmonary hypertension 
103,113,114 

Unknown Unknown No 106                     (1/1) Unknown 

 
References in first column are from mammalian studies of chronic developmental hypoxia (CDH).  Red and green colours indicate the 
presence or absence of the response, respectively.  Grey colour indicates that the parameter has yet to be studied in this vertebrate 
class.  Fractions in brackets indicate the percentage of papers that found the result (e.g. 1/3 = one in three papers found this result).   
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