
Effects of Developmental Hypoxia on the
Vertebrate Cardiovascular System

Developmental hypoxia has profound and persistent effects on the vertebrate

cardiovascular system, but the nature, magnitude, and long-term outcome of

the hypoxic consequences are species specific. Here we aim to identify com-

mon and novel cardiovascular responses among vertebrates that encounter

developmental hypoxia, and we discuss the possible medical and ecological

implications.
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Introduction

An organism is most sensitive to its environment
during early development. Even minor changes in
temperature, oxygen, or pH can lead to adaptive
responses that can alter embryonic and fetal mor-
phology and physiology (1). If the environmental
stress occurs during critical developmental periods,
the phenotypic changes are often permanent and
persist into adulthood (2). Epigenetic changes in
gene expression may also be triggered, which
means that the environment during development can
program traits that are heritable (3, 4). Furthermore,
adverse conditions during development may influence
the reproductive capacity of offspring (5). Therefore,
environmental fluctuations during early life can have
profound and persistent effects on organismal struc-
ture, function, and behavior across generations.
Insufficient oxygen supply (hypoxia) is one of the

most pervasive and disruptive environmental stres-
sors during embryonic and fetal development (6–9).
For mammals, oxygen levels within the womb are
tightly regulated to normal values at �25 mmHg. This
level of oxygen is considerably lower than arterial val-
ues in adulthood (�100 mmHg), but it is sufficient for
fetal tissue requirements and it promotes healthy fetal
and placental development (10, 11). However, human
fetal arterial PO2 (PaO2 ) can sometimes be halved to 12
mmHg [equivalent to the mother breathing 10% oxy-
gen saturation (%O2)] during pregnancy complications,
such as in placental insufficiency, preeclampsia, gesta-
tional diabetes, and even maternal obesity, which lead
to detrimental outcomes (12). In contrast to mammals,
many birds and oviparous ectothermic vertebrates
(fish, amphibians, and reptiles) develop with little or no
parental care and are often exposed to wide fluctua-
tions in oxygen. For example, embryonic birds can ex-
perience hypoxia at 12–16%O2 (13) due to nesting
behaviors in mounds, burrows, or alpine regions (13–
20), and embryonic reptiles can be exposed to

oxygen tensions ranging between 10%O2 and 21%O2

(21, 22). But possibly the most severe levels of hypoxia
are found in the habitats of embryonic and larval fish,
where some species develop in lakes and ponds with
<1%O2 (23). At the extreme, these environments may
become completely devoid of oxygen (anoxia) (24).
Thus, there is no “normal” oxygen concentration for
most embryonic birds and ectothermic vertebrates.
Given these constraints, natural selection is likely to
have favored the evolution of traits that protect avian
and ectotherm embryos from hypoxia.
The vertebrate cardiovascular system is particularly

sensitive to developmental hypoxia, as it is the first line
of defense against oxygen deprivation. In mammals, the
lack of oxygen causes fetal cardiovascular adjustments
that permanently remodel the heart and program dis-
ease susceptibility in adulthood (12, 25, 26). Embryonic
birds share many of the cardiovascular responses to de-
velopmental hypoxia with fetal mammals (8, 27), but
far less is known about ectothermic vertebrates. Imp-
ortantly, there are major differences in metabolism and
cardiovascular physiology between vertebrates. First,
the metabolic rate of embryonic ectothermic verte-
brates is much lower than that of endotherms, and, simi-
lar to that of bird embryos, it will vary according to the
temperature of the environment. Whereas developmen-
tal temperature in mammals is set at a narrow range of
37–39�C, it can vary from 31�C to 39�C in birds (13),
from 27�C to 38�C in reptiles (13), and from subzero to
43�C in fish (28, 29). Second, cardiovascular design
varies dramatically among the vertebrate classes; fish
have a single circulation with a two-chambered heart,
most reptiles and amphibians have a dual circulation
with a three-chambered undivided heart, and all croco-
dilians, birds, and mammals have a dual circulation with
a completely divided four-chambered heart (30). It is
likely that all of these factors will play a role in dictating
the vertebrate response to hypoxia.
Given the widespread occurrence of developmen-

tal hypoxia across diverse habitats and vertebrate
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species, a comparative analysis of vertebrate responses
to developmental hypoxia will contribute knowledge
toward a broad range of issues. From a clinical and
physiological perspective, comparing the responses
between viviparous and oviparous animals allows
us to separate the direct effects of developmental
hypoxia without the additional influences from the
maternal and/or placental physiology (reviewed in
Ref. 8). From a physiological and ecological per-
spective, comparing the limits of vertebrate devel-
opmental plasticity may help to predict species
dynamics due to climate change. Therefore, the aim
of this review is to provide a platform for a compara-
tive discussion of the phenotypic consequences of
developmental hypoxia on the vertebrate cardiovas-
cular system. We do not discuss the numerous and
diverse responses to developmental hypoxia in
each vertebrate species, as this is beyond the scope
of this focused review. Rather, we aim to identify
common and novel cardiovascular phenotypic signa-
tures among vertebrates as a consequence of develop-
mental hypoxia and discuss possible implications.

Embryonic and Fetal Cardiovascular
Responses to Hypoxia in Vertebrates

Embryonic and fetal vertebrates have three main
options to acclimate to hypoxia: increase oxygen
extraction, decrease oxygen consumption, and/or
increase the efficiency of oxygen utilization (12). The
overall response is unique to each species and highly
dependent on the timing, severity, nature, and dura-
tion of the hypoxic insult, which mediates broad
changes in cardiovascular structure and function
(25). Nevertheless, some common signatures have
emerged.

Modulation of Heart Rate

Most embryonic and fetal vertebrates respond to
acute hypoxia (minutes) with a reduction in heart rate
(32). This response is thought to lower the metabolic
demand of the heart, leading to reduced myocardial
oxygen consumption (12). However, it should be noted
that Fisher et al. (33) found no change in fetal cardiac
oxygen consumption after 15 min of acute hypoxia
(descending aortic PO2 at 14 mmHg), despite a 20%
reduction in heart rate. Whether fetal cardiac oxygen
consumption decreases immediately after the onset
of acute hypoxia, when the fetal heart rate is at its na-
dir, or during greater levels of fetal hypoxia has not yet
been investigated. The hypoxic bradycardia also
serves to increase myocardial contractility and main-
tain cardiac output through the Frank–Starling mecha-
nism, by prolonging end-diastolic filling time and
thereby end-diastolic volume (34). In birds, reptiles,
and fish, the bradycardia may not be evident in early
incubation or with mild levels of acute hypoxia, but a

reduction in heart rate is consistently observed in the
latter 70% of incubation (35–39). However, in situa-
tions where developmental hypoxia becomes chronic
(days to months), the initial bradycardia recovers in
mammals and birds, and heart rate remains at control
levels (40–43). In contrast, American alligators
exposed to�10%O2 at 10–90% development maintain
bradycardia throughout (44–46), and the same condi-
tions either cause no change (6, 44, 47) or significant
tachycardia (48–50) in snapping turtles and scincid liz-
ard heart rate. Tachycardia is also the common
response in embryonic and larval zebrafish exposed
to mild levels of chronic hypoxia, but this develops
into a bradycardia when the level of hypoxia is more
severe (<5%O2) (51–53). Thus, in contrast to endo-
thermic vertebrates, modulation of heart rate in
ectothermic vertebrates appears to be an impor-
tant mechanism to control cardiac output during
extended periods of developmental hypoxia.

Vascularization and Oxygen Carrying
Capacity

Under normal conditions, oxygen extraction in most
embryonic and fetal vertebrates is extremely efficient
because of the expression of functionally distinct high-
affinity hemoglobin isoforms (54). Nevertheless,
reductions in oxygen saturation of the arterial blood
can trigger adaptations that improve oxygen carrying
capacity and delivery. For example, hypoxia leads to
an increased expression of embryonic hemoglobin in
fish (55) and a stimulation of hematopoiesis in most
birds (56), fish (57), reptiles (58, 59), and mammals
(60, 61). Hypoxia is also a major stimulator of angio-
genesis in the chorioallantoic membrane of fish (62),
reptiles (63), and birds (56), which serves to improve
oxygen extraction at the site of gas exchange.
Similarly, in mammals, early-onset gestational hypoxia
remodels the placenta (64), increasing placental vol-
ume and the fetal capillary surface area (65).

The Brain-Sparing Effect and Asymmetric
Growth Restriction

The well-established “brain-sparing” circulatory response
is another common phenotypic signature in fetal mam-
mals, designed to support vital tissues at the expense of
less important organs (32). In this response, acute hy-
poxia triggers differential vasomotion, consisting of
constriction in the vasculature of peripheral organs,
such as the hindlimbs, and vasodilatation in hypoxia-
sensitive organs, such as the brain. Consequently,
the fetal cardiac output is redistributed to maintain
perfusion of the developing central nervous system
with adequate levels of oxygen and other nutrients
(32, 34, 66). Although protective in the short term,
sustained fetal brain sparing can result in asymmetric
growth restriction where fetal mammals including pri-
mates conserve head size at the expense of body
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length or they are thin for their length (67). The redis-
tribution of blood flow favoring the brain has also
been demonstrated in the chicken embryo in the
second half of incubation (68), and there is an appa-
rent increase in brain blood flow in hypoxic snapping
turtles from 70% of incubation (69). Numerous stud-
ies have shown that chronic hypoxia also causes
growth restriction in embryonic fish, reptiles, and
birds (6, 39–41, 44–46, 58, 70–85). Importantly,
whereas chronic hypoxia reduces embryonic body
mass and body length in American alligators, snap-
ping turtles, Florida red-bellied turtles, and leopard
geckos, the total incubation time is unchanged (6,
40, 44–46, 58, 70, 76, 77, 82, 86). Similarly, some
models of chronic hypoxic pregnancy in rats do not
reduce gestational length (87), but lambs from
hypoxic pregnancies tend to be born a few days
earlier (88).
Similar to mammals, birds, and reptiles, hypoxia

leads to slower tissue growth rates (51, 89–92) and
growth retardation (57, 89, 93–99) in fish. However,
fish may represent an outlier with respect to the em-
bryonic/fetal brain-sparing effect. To our knowledge,
there is no evidence of asymmetric growth restriction
in fish, and recent in vivo imaging of zebrafish larvae
chronically exposed to hypoxia [8%O2 from 1 to 15
days postfertilization (dpf)] has shown that brain blood
flow is unchanged (57), despite a redistribution of
blood flow. Instead, it appears that blood flow is driven
from the zebrafish gut to the so-called red layer of
muscle, which has been implicated in the uptake of
oxygen in early larvae (100). Therefore, oxygen extrac-
tion may be the priority in hypoxic zebrafish larvae.
Nevertheless, it is also possible that the reflex cardio-
vascular responses required for the brain-sparing
effect may only exist in the latter stages of zebrafish
development, after 15 dpf. Interestingly, in contrast to
the human or sheep, fetal animals of highland species,
such as the llama, show no increase in brain blood
flow during acute hypoxia (101), with no increase in ox-
ygen extraction across the brain (102). Instead, there is
a fall in fetal brain O2 consumption and temperature,
together with a decrease in the activity of Naþ -Kþ -
ATPase and in Naþ channel expression, which serves
to reduce metabolic demand and protect against seiz-
ures and neuronal death (103).

Cardiac Enlargement or Sparing

In addition to asymmetric growth restriction, the sus-
tained vasoconstriction and redistribution of blood
flow associated with embryonic/fetal brain sparing can
cause systemic hypertension (60, 104). The resulting
increase in cardiac afterload can trigger cardiac
enlargement, which is sometimes observed in fetal
rats and sheep (105, 106). More commonly, mamma-
lian fetal heart mass is unchanged during chronic hy-
poxia (“spared”) and body weight is reduced, leading

to an increase in the heart-to-body weight ratio (25,
61, 105–109). This latter phenotype is also the domi-
nant response in chronically hypoxic embryos from
chickens, American alligators, snapping turtles, and
Florida red-bellied turtles (37, 45, 58, 71, 86, 110).
However, cardiac hypertrophy has been reported in
the lizard gecko and the snapping turtle late in devel-
opment (45, 77), and some studies have even found
thinning of the ventricular wall in chickens (72, 111, 112).
In embryonic zebrafish, chronic hypoxia initially
causes a reduction in heart size, but cardiac hypertro-
phy occurs once they reach the larval stages (62, 113–
115). It is not clear why these studies have such dis-
crepancies between species and vertebrate classes,
and there seems to be no clear correlation between
the response and experimental variables such as spe-
cies, stage of development, and/or the severity of the
hypoxic exposure. Interestingly, Crossley’s group
identified specific stages of development in which rep-
tiles were particularly sensitive to hypoxia (e.g., critical
windows) and showed that cardiac enlargement in alli-
gators and turtles precedes, and is distinct from, the
critical window for somatic growth restriction. This
suggests that, at least in reptiles, embryonic cardiac
hypertrophy is a targeted and direct response to hy-
poxia, rather than an indirect outcome of reduced so-
matic growth (43, 46).

Adrenergic Sensitivity

Sensitization of the sympathoadrenal medullary sys-
tem is another hallmark of the vertebrate response
to developmental hypoxia. First, basal levels of
plasma norepinephrine and/or epinephrine are
increased in hypoxic fetal sheep (116–119), fetal lla-
mas (102), embryonic chickens (120–122), and em-
bryonic alligators (41). The density, expression, and
sensitivity of b-adrenergic receptors are also enhanced
by hypoxia in embryonic chickens (73, 123), as well as
enhanced sympathetic innervation in the peripheral
vasculature (122). The mammalian fetal peripheral vaso-
constrictor response to hypoxia, part of the fetal brain-
sparing response and triggered by sympathetic activa-
tion, is also markedly sensitized by chronic hypoxia (117)
and is greatly increased in the llama fetus relative to fe-
tal sheep (101–103). Similarly, chronic hypoxia increases
gene expression of b-adrenergic receptors in larval
zebrafish (53) and increases cardiac responsiveness to
adrenergic agonists in rainbow trout, as well as delay-
ing the onset of cholinergic control (91). The sensitiza-
tion of the sympathoadrenal medullary system by
developmental hypoxia serves to increase oxygen
delivery by raising cardiac output and also contributes
to the brain-sparing effect through enhanced periph-
eral vasoconstriction. However, sustained sensitization
can be detrimental and lead to cardiac and vascular
remodeling and dysfunction, increasing cardiovascular
risk in later life (12).
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Mitochondrial Remodeling and Oxidative
Stress

During normal development in mammals, a metabolic
shift from anaerobic to aerobic respiration occurs dur-
ing mid to late gestation and the heart relies predomi-
nantly on mitochondria for the majority of ATP
production (124). Hypoxia is expected to reduce ATP
production and increase reactive oxygen species
(ROS) production, which can lead to mitochondrial
remodeling (125). Indeed, early- and late-onset gesta-
tional hypoxia has been reported to decrease fetal
cardiac mitochondrial protein expression and activity
of electron transport chain complexes, increase ROS
and markers of oxidative stress, reduce mitochondrial
DNA copy number, and decrease mitochondrial respi-
ration (126–128). Interestingly, the phenotype in all
these studies was sex dependent and either absent in
females or more pronounced in males. In contrast, the
avian mitochondrial phenotype response to hypoxia is
much milder, with one study finding no effects of hy-
poxia on chicken embryonic mitochondrial ROS pro-
duction and respiration (apart from a mild decrease in
complex IV) (129) and another finding an increase in
mitochondrion-derived oxidative stress, together with
a reduction in mitochondrial efficiency (130). To our
knowledge, only one study has been performed on
embryonic ectothermic mitochondria, which showed
that hypoxia had no effects on alligator mitochondrial
respiration or efficiency (131).

Effects of Developmental Hypoxia on
the Adult Cardiovascular System

The seminal work from David Barker in the 1980s
showed that intrauterine stressors could increase car-
diovascular disease susceptibility in adulthood (132), a
phenomenon known as developmental programming.
Since then, there has been extensive research into
the long-term effects of developmental hypoxia on
cardiovascular health and disease. This section
reviews the cardiovascular phenotype of vertebrates
that were exposed to developmental hypoxia and
subsequently maintained in normoxia until adulthood.

Long-Term Outcome in Birds and Mammals

It is now well established from epidemiological and
laboratory studies that mammalian pregnancies com-
plicated by hypoxia increase the incidence and likeli-
hood of cardiovascular dysfunction and disease in
adulthood (12, 133–136). After birth, the growth-re-
stricted neonate continues to develop ex utero in a
process called “catch-up growth” allowing for the
rapid development of organs that were sacrificed in
utero (137). Although necessary, the accelerated
growth causes problems of its own and has been
linked to programmed disease (138) The most

common attributes of the cardiovascular phenotype of
adult offspring from hypoxic pregnancies include car-
diac hypertrophy, enhanced myocardial contractility,
hypertension, endothelial dysfunction, thickening of
the aortic wall, sympathetic dominance, mitochondrial
abnormalities, and diastolic dysfunction (reviewed in
Ref. 12). Many of these problems are carried forward
from the hypoxic pregnancy, whereas others appear
to develop with aging, and, similar to the embryonic
phenotype, females are usually less affected than
males. Although the cardiac phenotype is not always
overt, it is important from a clinical perspective
because it appears to sensitize the adult heart to dis-
ease stimuli, such as ischemia-reperfusion injury (109,
139–141). Indeed, recent clinical work has shown a
higher incidence of many cardiovascular diseases in
offspring from pregnancies associated with hypoxia,
such as placental insufficiency, fetal growth restriction,
and preeclampsia (133, 134, 136). These studies sug-
gest that developmental hypoxia is an independent
risk factor for cardiovascular disease, and studies are
now underway to develop maternal therapies to pre-
vent cardiovascular programming (12).
Unfortunately, far fewer studies have deter-

mined the long-term impact of developmental hy-
poxia on the adult avian cardiovascular system,
but there are clearly many similarities with the
mammalian phenotype. For example, sex-depend-
ent pulmonary hypertension and right heart dys-
function were found in adult chickens raised from
eggs incubated at high altitude, and this was asso-
ciated with hypotension and lower systolic and di-
astolic arterial pressures (107, 142). Some studies
have also found cardiac hypertrophy in adult
chickens from hypoxic incubations (142), whereas
others have not (71, 73), and there have also been
reports of reduced contractility, extended relaxa-
tion times, myocardial fibrosis, systemic hyperten-
sion, decreased b-adrenergic sensitivity, and
altered baroreflex sensitivity (107, 123, 143).
Variations in the cardiovascular outcome of devel-
opmental hypoxia between studies are likely de-
pendent on the specific experimental conditions,
but these studies highlight the similarities between
chickens and mammals in the cardiovascular
responses and the programming of heart disease.
Therefore, the chicken embryo continues to be a
useful model for assessing the consequences of
chronic developmental hypoxia in isolation, and it
confirms that developmental programming of heart
disease is not solely dependent on maternal and/or
placental factors.

Long-Term Outcome in Reptiles

There are many similarities in the cardiovascular phe-
notype of reptiles and mammals subjected to hypoxia
during development. For example, juvenile reptiles (1–
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3 yr) from hypoxic incubations have an increased
heart-to-body mass ratio, sympathetic dominance,
and greater left ventricle stroke volume (76, 144–146).
The increase in cardiac performance and adrenergic
tone allows American alligators from hypoxic incuba-
tions to maintain higher aortic and carotid blood flows
during swimming compared with their normoxic coun-
terparts (144). Interestingly, the hypoxic alligators also
had a decreased ratio of right ventricle to left ventricle
mass (76), which is similar to adult mammalian off-
spring from hypoxic pregnancies and may reflect a
sustained pulmonary hypertension (147, 148). Juvenile
snapping turtles from hypoxic incubations also have
increased stroke volume and cardiac output, but this
is achieved by a different mechanism, since they have
lower heart rates and a normal heart-to-body mass ra-
tio (149). Similar to alligators, 5-yr-old turtles from
hypoxic incubations have increased systemic blood
flow (149). Nevertheless, in contrast to mammals, rep-
tiles from hypoxic incubations do not show signs of di-
astolic dysfunction and, in fact, exhibit faster rates of
ventricular relaxation (127). Another difference from
mammals is that alligator hatchlings do not exhibit
catch-up growth after hypoxia and instead remain
growth restricted into adulthood (76, 144–146).
Some studies suggest that developmental hypoxia

in reptiles can program greater hypoxia resistance
later in life (145, 150). For example, exposure to devel-
opmental hypoxia blunts the cardiovascular response
to acute hypoxia (4%O2 for 20 min) in alligators (145)

and allows juvenile snapping turtles to maintain car-
diac output twofold higher than control animals during
2 h of anoxia (150). The improved anoxia tolerance in
snapping turtles was supported by an increased myo-
filament calcium sensitivity (151), a superior ability to
suppress cardiac myocyte ROS production during an-
oxia (151), and lower basal mitochondrial ROS produc-
tion (152). This latter finding may have important
physiological and ecological implications, because
limiting ROS production during hypoxia will reduce the
likelihood of oxidative stress damage, which could be
especially important for freshwater turtles that regu-
larly encounter anoxia during breath-hold dives and
when they are overwintering under ice-covered lakes.
Similar adaptive responses have also been observed
in adult American alligators after developmental hy-
poxia, where hypoxic cohorts have enhanced mito-
chondrial efficiency through a reduction in proton leak
respiration (131).

Long-Term Outcome in Fish

The cardiovascular phenotype of juvenile and adult
fish from hypoxic incubations is very poorly studied.
Some fish exposed to developmental hypoxia exhibit
catch-up growth (99, 153, 154), whereas others do not
(93, 155), but to our knowledge there is nothing
known about cardiac structure or function. There is
evidence that developmental hypoxia alters car-
diac gene expression in rainbow trout, which could

FIGURE 1. Summary of effects of chronic developmental hypoxia (ranging between days and months) on the cardiovascular system dur-
ing fetal and postnatal life across species
Downward- and upward-facing arrows represent a decrease or increase in the factors, respectfully. A tilde represents contrasting evidence within the litera-
ture, and question marks represent a currently unknown response to developmental hypoxia. Image created with BioRender.com, with permission.
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have implications for contractile function (154), and
critical swimming speed is reduced (154). However,
another study found negligible effects of develop-
mental hypoxia on aerobic scope in Atlantic salmon
(156). In contrast to reptiles, some fish that are
raised in hypoxia show a reduced hypoxia toler-
ance as juveniles (99, 153). Clearly, more studies
are necessary to fully determine the long-term
impact of embryonic hypoxia exposure on fish car-
diovascular function and fitness.

Perspectives

Despite the profound differences in developmental
morphology and physiology among vertebrates, there
are remarkable similarities in the cardiovascular
responses to chronic developmental hypoxia (FIGURE
1). These similarities are even more impressive when
one considers the differences between studies in ex-
perimental variables, such as species, body tempera-
ture, severity of hypoxia, and physiological status (e.g.,
carbon dioxide levels and metabolism). This suggests
that the main cardiovascular responses to develop-
mental hypoxia have ancient origins and have been
well conserved throughout vertebrate evolution.
However, these compensatory responses early in life
may claim trade-offs later in life. In mammals and birds,
developmental hypoxia is associated with cardiovas-
cular dysfunction and increased susceptibility to ische-
mia-reperfusion injury. The clinical implication for
humans is that chronic developmental hypoxia should
be recognized as an independent risk factor for off-
spring cardiovascular disease. In contrast, although
reptiles and fish that experienced hypoxia during de-
velopment share some common traits with mammals
in adulthood, there are no overt signs of cardiovascu-
lar disease, and some species may even have
enhanced stress tolerance. The reasons for the differ-
ential adaptation to developmental hypoxia in verte-
brate endotherms compared with some vertebrate
ectotherms are not clear. It is possible that ectother-
mic vertebrates elicit compensatory responses to hy-
poxia during development that do not claim adverse
consequences at hatching. These alternative compen-
satory responses may include actions that lower meta-
bolic demand, such as the neuronal hypometabolism
reported in the llama fetus. Nevertheless, even if dis-
ease does not manifest, changes in the cardiovascular
phenotype of ectotherms in response to developmen-
tal hypoxia can impact survival by altering fitness-
related behaviors, such as mate selection and preda-
tor-prey interactions. Future research in this field may
consider designing experiments that isolate the bene-
ficial effects of developmental hypoxia on cardiovas-
cular health from detrimental effects, as well as
measuring fitness-related traits such as fecundity and
mortality. It is also important to define the threshold
level and duration of developmental hypoxia that

elicits changes in the vertebrate cardiovascular sys-
tem, as this will help to predict clinical outcomes and
the effects of climatic disturbances. Finally, more work
needs to be done to understand the synergistic
effects of developmental hypoxia and other environ-
mental factors that often occur simultaneously, such
as hypercapnia and acidosis. Taking this kind of inte-
grative approach is critical for predicting and miti-
gating the effects of climate change on the
developmental plasticity of birds and ectothermic
vertebrates. n
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